

Alfresco 3
Records Management

Comply with regulations and secure your organization's
records with Alfresco Records Management

Dick Weisinger

 BIRMINGHAM - MUMBAI

Alfresco 3 Records Management
Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2011

Production Reference: 1110111

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849514-36-1

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Dick Weisinger

Reviewer
Sherwin John Calleja-Tragura

Acquisition Editor
Steven Wilding

Development Editors
Rakesh Shejwal

Swapna Verlekar

Technical Editor
Dayan Hyames

Copy Editor
Leonard D'Silva

Indexers
Tejal Daruwale

Rekha Nair

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Priya Mukherji

Project Coordinator
Shubhanjan Chatterjee

Proofreaders
Jacqueline McGhee

Aaron Nash

Graphics
Nilesh R. Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Dick Weisinger is Vice President and Chief Technologist at Formtek, Inc. and
has more than 20 years of experience in the area of Enterprise Content Management
especially Content, Document, and Image Management. His career spans many
projects and organizations and he has contributed to software solutions used for
health care, finance, engineering, discrete manufacturing, and aerospace and defense
applications. Dick is a regular contributor to the Formtek blog at http://www.
formtek.com/blog on topics that include ECM, SaaS, Open Source, SOA, and New
Technology.

Dick earned a Masters in Engineering Science in Operations Research from the
University of California at Berkeley and a Masters in Engineering Science from the
Johns Hopkins University. Dick is an AIIM-certified Records Management Specialist.

I would like to thank everyone who helped make this book a reality,
including Rakesh Shejwal, the development editor; Shubhanjan
Chatterjee, the project coordinator; Dayan Hyames, the technical
editor, and Sherwin John Calleja-Tragura, the book's technical
reviewer.

Special thanks to Dennis Scanlon and to team members at Formtek
for providing support and the necessary time needed to work on
this book, and also thanks to my wife and son for their support and
understanding.

About the Reviewer

Sherwin John Calleja-Tragura is a Java Technical Consultant/Architect of
Alibata Systems Incorporated (ASI), a software development and training team
in Manila, Philippines. He is currently conducting corporate training on different
object-oriented disciplines, especially Java/JEE-core and C++ courses. He also
spearheads the technical team of the company's Ofbiz/Opentaps ERP and Alfresco
Document Management projects. He is currently an EMC Documentum Proven
Associate (E20-120).

Tragura started his career as a Computational Science faculty at the University of
the Philippines-Los Banos where he took some units in MS Computer Science. He
was a part-time PHP developer then.

I would like to thank my UPLB-FOREHA friends for their utmost
support to my skill sets and talents. Likewise to Owen Estabillo who
is always there through my ups-and-downs.

www.PacktPub.com

Support files, e-books, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers e-book versions of every book published, with PDF
and e-Pub files available? You can upgrade to the e-book version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the e-book copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and e-books.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Records Management 9

What is a record? 9
What is Records Management? 11

Electronic Records Management 11
Record lifecycles 11
Benefits of Records Management 15

Records Management is about complying with legal requirements 15
Regulatory compliance 16
Authority Documents and compliance 16
E-discovery 17

Records Management is about ensuring accountability 19
Records Management is about preserving assets 20
Records Management is about efficiency 21
Records Management is about being prepared 22
Records Management is about coming to grips with data volumes 25
Records Management is about security 26
Records Management is about good business 27

Summary 27
Chapter 2: Getting Started with the Alfresco Records
Management Module 29

The Alfresco stack 29
Alfresco software 30

Make sure the software versions are compatible 31
Downloading the Alfresco software 31

Alfresco Community 31
Alfresco Enterprise 32

Installing the base Alfresco software 33
Running the installer 33

Table of Contents

[ii]

Installing Alfresco Records Management modules manually 41
Starting the Alfresco Repository and Share application 44
Starting Alfresco Share 46
Share dashlets 48
Enabling the Records Management dashlet 49
Adding the Records Management site 50
Designating the Records Management administrator 51

How does it work? 52
The Records Management AMP Files 53
The Records Management Console dashlet 55

The flow of Alfresco webscripts 55
The flow of the Records Management webscript dashlet 57

Web development within Share 72
Summary 72

Chapter 3: Introduction to the Alfresco Share Records
Management Site 73

The Share environment 74
A brief history of Alfresco Share 74

Alfresco Share as a social platform 74
Alfresco Share and the Alfresco 3 Labs release 75
Alfresco Share 3.X Post-Labs release 75

Use cases for Alfresco Share 76
Team project sites 76
Publishing sites 76
Personal sites 77

Alfresco Share and collaboration 77
Share dashboards 77

Changing the dashboard layout 80
Changing the placement of dashboard dashlets 80
Changing site dashboards 80

Site pages 81
Configuring site page navigation 81

Share themes 83
Share collaboration 84

Collaboration tools 84
Project-based collaboration data 85

The Records Management site 86
The site dashboard 86
The File Plan 86

The File Plan toolbar 87
Left navigation panel 90

Records search 92
Site members 93

Administration of site members 93

Table of Contents

[iii]

How does it work? 94
Share configuration files 94

Repository property files 95
Customizing bean files 96
Server log configuration file 101

Dashboards 102
Preset dashboard configurations 102
Modifying the preset dashboard configurations 109
Persistence of dashboard configurations 110
Modifying existing user dashboards 116
Programmatically accessing persisted dashboard data 116

Creating a new Share theme 118
Share site top navigation toolbar 119

Summary 120
Chapter 4: Metadata and the Alfresco Content Model 123

The Alfresco Content Model 124
The model namespace 125

Alfresco namespaces 125
Types 127
Properties 129
Constraints 131

Types of constraints 132
Associations 134
Aspects 137

Creating a new model 139
Designing the model 139
Implementing the model file 141

The model file header 141
Model import files 142
The model namespace 142
The model constraints 143
The model types 143
The model aspects 146

Installing the model 146
Bootstrap deployment of the model 147
Dynamic deployment of the content model 148

Exposing a new content model from the Share user interface 150
Adding Types to the site upload form 150
Adding Types to the Change Type action 152
Seeing the new Type applied to a content node 154
Customizing the forms for viewing and editing the new model's metadata 156

The Records Management Content Model 161
The Records Model 162

The Records Model header 162
The Records Model imports 163

Table of Contents

[iv]

The Records Model namespace 163
The DoD 5015 Records Management Content Model 164

Extending the Alfresco Content Model 164
Summary 166

Chapter 5: Creating the File Plan 167
The File Plan—a definition 168

Components of the File Plan 168
Benefits of the File Plan 170
Looking at the Alfresco example File Plan 170

Best practice for creating the File Plan 172
File Plans based on organizational hierarchy 172
File Plans based on business processes and activities 173
Best practice for File Plan design 173

Creating the File Plan 174
Adding containers to the File Plan 175

Creating a Series 175
Creating a Category 176
Creating a Folder 178

File Plan container metadata 179
Copy and move of File Plan containers 181
How does it work? 182

How the File Plan page is set by the preset 182
The File Plan, as extended from the Document Library 183
The Document Library JavaScript controller file 184

Getting the Location Type 185
Setting doclibType in the model data 187
Setting the root node in the model data 187

The Document Library FreeMarker presentation 191
FreeMarker page layout for the File Plan 191
The File Plan Document List 197
The Document List Data Table 201

Summary 206
Chapter 6: Creating Disposition Schedules 207

What is the disposition schedule? 207
Disposition instructions 208

The record lifecycle 208
Inheritance of the disposition 212
Disposition example—application at the Folder level 212
Disposition example—application at the record level 214

Creating the disposition schedule 216
The review 216
The disposition schedule 218

General information for the disposition 219

Table of Contents

[v]

The disposition steps 220
Configuring a simple disposition schedule 222
Time-based triggers 223
Event-based triggers 225
Trigger precedence 226

Making changes to the disposition schedule 227
Deleting steps of the disposition schedule 227
Editing steps of the disposition schedule 228

Importing and exporting File Plan data 228
Importing a File Plan 229
Exporting the File Plan 230

How does it work? 231
The Category details page 231
The edit disposition instructions page 235
The create disposition steps page 238

Disposition edit client-side JavaScript 241
Summary 243

Chapter 7: Filing Records 245
Filing—more than one way 246
Filing an electronic record from Share 247
Filing a non-electronic record from Share 251
Filing from another Share site 252
Filing a record from a CIFS mounted drive 253

What is CIFS? 253
Filing with CIFS 254
Configuring CIFS 255
Troubleshooting CIFS 256

Checking to see whether the CIFS server is running 256
Missing NetBIOS DLL 257
Problems with ports 258
CIFS server name is too long 258
Conflicts with authentication settings 259

Filing from an e-mail client with IMAP 259
What is IMAP? 259
Filing with an IMAP e-mail client 260
Configuring IMAP 260

Configuring IMAP to run on the server 260
Configuring IMAP on e-mail clients 262

Filing to Alfresco via FTP 266
Bulk import 267

An unsupported add-on 267
Bulk import and Records Management considerations 267

Bulk import can't import disposition information 267

Table of Contents

[vi]

Installing bulk import 268
Simple interface to access bulk import 268

Bulk import shadow files 269
Auto-declaration of records 270
Metadata and dates 271
Running the tool 271

Filing by scanning 272
Identify which records to scan 272
Metadata and classification 273
Filing scanned images 273

Other ways to file 274
How does it work? 275

Internals of electronic file upload 275
Internals of non-electronic record filing 281

Summary 285
Chapter 8: Managing Records 287

Records Details 288
Alfresco Flash previewer 289
Record Metadata 290
Record actions 292

Download action 292
Edit Metadata 292
Copy record 293
Move record 294
File record 294
Delete record 295
Audit log 295

Links 297
Events 297
References 298

How does it work? 300
The Details page 300

The JavaScript controller for the Details page 301
The FreeMarker template for the Details page 301

Summary 315
Chapter 9: Following the Lifecycle of a Record 317

Undeclared records 318
Specifying mandatory metadata 318
Declaring the record 319
Record review 320
Closing a Folder 321
Cutoff 321

Table of Contents

[vii]

Transfer 321
Accession 325
Destruction 327
Audit log 328
Hold or freeze 329

Responding to a hold request 330
Freezing records 330
Locating records on hold 331
Creating an export package of requested records and metadata 332
Releasing the hold 334

The File Plan report 334
How does it work? 335

The unique record ID 335
Background jobs 336

Review notifications 337
Lifecycle tracking 342

The File Plan component 344
Linking to the transfer and hold pages 346
Rendering transfer and hold Items 346
Finding transfer items 347
Finding hold items 348

Transfer report 349
Summary 352

Chapter 10: Searching Records and Running Audits 353
Search and Records Management 353
Authorization and search 354
Records Search page 354

Single-field search form 354
The Search form 355

Basic search 356
Property search 356
Date search 357
Search filters 358
Restricted File Plan search 360
Search result columns 360
Result list search order 361
Clearing the search criteria 362
The Results tab 362
Syntax errors 364

FTS-Alfresco query language 364
Searching for a term 364
Searching for a phrase 365
Wildcard search 365

Table of Contents

[viii]

Conjunctive search 365
Disjunctive search 365
Negation 366
Properties 366
Special fields 367

Escaping QNames 368
Escaping characters not in a QName 369

Grouping 369
Boolean 369
Dates 370
Ranges 370
Proximity searches 371
Mandatory elements 372
Optional elements 372
Operator precedence 372

Example searches 372
Saved searches 373

Creating a saved search 373
Editing a saved search 374
Deleting a saved search 375

Records Management audits 376
Purpose of the records audit 376
Planning for the audit 376
Things to look for in the audit 377
Deliverables from the records audit 378

The Audit tool 379
Accessing the Audit tool 379
Using the Audit tool 380

Running an Audit report 380
Filtering the report by event 382
Filtering the report by property 383
Filtering the report by user 384
Filtering the report by date 385
Audit log viewing options 385
Viewing the full log 386
Filing the Audit log report 386
Export the Audit log report 387
Stopping, starting, and clearing the Audit log 387

How does it work? 388
The Records Search page 388
DataSource and data webscript 390
Saved searches 391
Custom properties 392

Table of Contents

[ix]

The Audit tool 393
Summary 395

Chapter 11: Configuring Security and Permissions 397
Creating users 397

Adding a new Share user 398
New user access to Share 400
User admin 401

Groups and Records Management 401
Browsing groups 402
Adding a new group 403
Deleting a group 404
Editing groups 405
Adding members to a group 406

Member access to the Records Management site 406
Subscribing to the Records Management site 407
Requesting access to the moderated Records Management site 408
Access to a private Records Management site 409

Creating Records Management roles 411
Roles and permissions 411
Access controls applied to the File Plan 412
Viewing and editing the Records Management roles 413

Browsing role permissions 414
Editing role permissions 418
Creating a new role 419
Deleting a role 419

Read and file permissions 419
The User Rights Report 422
How does it work? 423

Admin console—users 423
Users in the repository 424

Users as usr:users 425
Users as cm:persons 425

Access to roles via webscripts 428
Permissions 429

Summary 430
Chapter 12: Configuring Records Management Parameters 431

The Records Management Console 432
List of Values 432

Supplemental Markings 433
Transfer Locations 434
Creating a new List of Values 435

Table of Contents

[x]

Deleting the List of Values 436
Custom Metadata 437

E-mail Mappings 439
E-mail metadata 440
Creating an e-mail mapping 441

Events 441
Relationships 443

How does it work? 445
The Management Console page 445
Rendering of Management Console tools 446
The Console page layout 447

The tools navigation region 448
Custom Records Management metadata 449

List of Values 452
Events 454
WebScript calls for Management Console information 455

Summary 456
Index 459

Preface
Alfresco Enterprise Content Management (ECM) software provides content-centric
features in the areas of Document Management (DM), Web Content Management
(WCM), and Microsoft SharePoint-like Collaboration. Alfresco is particularly
strong in handling the storage of large amounts of content and in enabling
collaboration. Alfresco software is licensed as either open source Community or
with a fully-supported Enterprise license.

There has been incredible growth in the breadth of the capabilities of Alfresco
software since the initial Alfresco software release in 2005. Much of that growth has
been possible due to good software architectural decisions that Alfresco developers
made early on. Those early decisions drove the development of a solid and extensible
software foundation that has enabled new capabilities to be rapidly built out.

In late 2009, Alfresco introduced another new capability, an extension for Records
Management that was not only compatible with, but also certified for, the
Department of Defense (DoD) 5015.2 Records Management standard.

The announcement was notable, because firstly, the certification for 5015.2 is difficult
to achieve. Only a few more than a dozen vendors out of an industry with vendors
numbering in the hundreds have managed to be certified for 5015.2. Secondly, it was
notable because Alfresco made the records software available as a free component
in the open source community version of its software. Prior to that announcement,
certified Records Management software was available for many tens, if not
hundreds, of thousands of dollars.

Preface

[2]

The focus of this book is the Alfresco Records Management Module. To fully
understand how Alfresco Records Management works, and why it works the
way it does, it is necessary to also understand many of the basics of Records
Management. This book tries to cover sufficient background in Records
Management to bring users up to speed so that they can effectively set up a
records program within their organization and then go about implementing
the program using Alfresco Records Management.

As a result of the approach taken, the first chapter in the book is focused almost
exclusively on Records Management without any specifics on the Alfresco
implementation. After that, we dive down into great detail about how to set up,
configure, and actually use Alfresco Records Management.

Dick Weisinger, the author of this book, is Vice President and Chief Technologist
at Formtek, Inc. Formtek and provides Enterprise Content Management (ECM)
software and services to its customers globally. Headquartered in the US, Formtek
has partners and customers in the Americas, Asia, and Europe. Records Management
and Alfresco software are some of Formtek's core capabilities.

Additional information can be found about Formtek products and
services at http://www.formtek.com.

What this book covers
Chapter 1, Records Management, describes the importance of Records Management and
provides an overview of the general principles and the benefits that can be derived
from implementing Records Management. Both Records Management standards,
ISO 15489 and DoD 5015.2, are introduced.

Chapter 2, Getting Started with the Alfresco Records Management Module, narrows
the discussion of Records Management to the Alfresco Records Management
implementation. This chapter describes in detail how to install Alfresco Share
with the Records Management Module, and then how to create the Alfresco Share
Records Management site. In the latter part of this chapter, we discuss technical
details of Alfresco webscripts and some of the underlying implementation of the
Records Management dashlet.

Chapter 3, Introduction to the Alfresco Share Records Management Site, describes the basic
framework of an Alfresco Share site, describing Share dashboards and collaboration
features. The chapter also gives an overview of the File Plan and Records Search
pages, which are unique to the Records Management site. At the end of this chapter,
we examine some of the internal workings of Share site dashboards and the dashlets
contained within them.

Preface

[3]

Chapter 4, Metadata and the Alfresco Content Model, introduces the Content Model
structure used by Alfresco for defining document types and for specifying the metadata
properties that are associated with document types. This chapter discusses in great
detail how to define and extend document types and aspects of the Alfresco Content
Model. Specifically the Records Management content models are looked at in detail.

Chapter 5, Creating the File Plan, describes best practices for developing a File Plan
that uniquely fits the needs of your organization. We then see how to take the File
Plan design and implement it within Alfresco. The chapter describes the mechanics
of the File Plan implementation which involves creating the DoD 5015.2 foldering
hierarchy of Series, Category, and Folder container. In the latter part of the chapter,
we look at the internals of the File Plan page within the Records Management site.
We note that this page is similar to and shares code with the Document Library page
used by standard Share sites.

Chapter 6, Creating Disposition Schedules, describes how record retention and lifecycle
information is defined within the disposition schedule. This chapter shows how
a disposition schedule is created and applied at the Category level within the File
Plan. The end of the chapter examines how the disposition page in the web client is
constructed and interacts with the Alfresco repository using AJAX. We also see in
detail how and where disposition information is stored within the repository.

Chapter 7, Filing Records, shows that methods other than the Alfresco Share web
browser interface can be used to file records. The chapter describes how records can
also be filed from an e-mail client, like Microsoft Outlook, or directly from the file
system, using, for example, Windows Explorer in the Microsoft Windows operating
system, or via FTP or batch loading programs. At the end of the chapter, we examine
the low-level details of how files are uploaded and stored in the repository, and we
also look at the internals of the upload form that allows multiple files to be selected
for upload from the browser client.

Chapter 8, Managing Records, covers how to perform operations on records once
the records have been filed into the File Plan. The operations discussed include
copy, move, delete, the creation of links between records, and the viewing of a
record's audit history. The latter part of the chapter discusses some of the internal
implementation details of the built-in web preview capability.

Chapter 9, Following the Lifecycle of a Record, walks through the possible steps of the
record lifecycle, typically from filing to destruction. The discussion includes record
transfer and record accession, and describes how and why records might need to
be frozen. The difference between the destruction and deletion of records is also
described. The discussion on implementation internals looks at e-mail notifications
and how background scheduled jobs automatically process steps of the record
lifecycle.

Preface

[4]

Chapter 10, Searching Records and Running Audits, describes how to perform basic and
complex searches for records in the File Plan, and how frequently used searches can
be saved and later recalled and reused. The chapter describes the Audit Tool within
the Records Management console and shows how reports can be run to audit actions
and events that have occurred in the records system. At the end of the chapter, the
internal implementation of the repository webscripts that are used to implement
search and audit capabilities are discussed.

Chapter 11, Configuring Security and Permissions, explains how to create and modify
users and groups that will have access to the Alfresco Share Records Management
site. It describes how to create and modify Records Management roles and then how
to assign permissions to those roles. The chapter also discusses how to set access
rights for areas within the File Plan. The end of the chapter describes how webscripts
are used to retrieve user, group, and role information from the repository.

Chapter 12, Configuring Records Management Parameters, discusses a number of useful
administrative features that are available in the Records Management console.
One of these tools allows the user to add custom metadata properties to extend the
standard Alfresco Records Management content model. Other administrative tools
are used to create custom events and to specify relationship types between records.
In the implementation discussion for this chapter, we look in detail at how Alfresco
implements dynamic metadata extensions to the content model.

Appendix A, Records Management Standards, discusses the ISO 15489 and DoD 5015.2
standards in greater detail than covered in Chapter 1.

Appendix B, The Records Content Model, shows the detailed structure of the content
model for Records Management in Alfresco.

Appendix C, Records Management Terms, lists and defines commonly used terms used
in Records Management.

You can download Appendices A, B, and C from https://www.
packtpub.com/alfresco-3-records-management/book.

What you need for this book
The focus of this book is on the Alfresco Records Management module and requires
only the following Alfresco software and Alfresco software stack elements:

•	 Alfresco 3.2r+ Software, Enterprise, or Community
•	 Alfresco 3.2r+ Records Management Module, Enterprise or Community

Preface

[5]

Alfresco offers stack-complete installation bundles on both
Windows and Linux that include all elements of the stack
needed for the software to run, like the database (MySQL) and
application server (Tomcat).
More information is provided in Chapter 2 where the software
installation is discussed in detail.

Who this book is for
The primary target audience of this book includes individuals who will be
implementing Records Management programs for their organizations. It will be
particularly relevant to Records Managers, Business Analysts, and Software Developers.

Alfresco Share Developers will also be interested in some of the implementation
details which are discussed here and which can be applied generally to other
Alfresco Share development projects.

Alfresco Share is built on the Spring-Surf framework which extensively uses client
and server-side Javascript and the FreeMarker templating language. At the end
of many of the chapters are sections which are aimed at developers and which
discuss the implementation details of Records Management within Alfresco Share.
An understanding of Javascript, FreeMarker, and HTML would be useful when
reading those sections of this book. Readers not interested in the details of the
implementation should feel free to skip over those sections of the book.

No prior knowledge of Alfresco Share software is required to follow this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Objects of the type disposition action,
or rma:dispositionAction, are being tracked."

A block of code is set as follows:
Title
header.fileplan=File Plan

Filters
label.transfers=Transfers
label.holds=Holds

Preface

[6]

Any command-line input or output is written as follows:

C:\>net config workstation

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "We can
click on Next and then on Finish to create the new e-mail account".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail us at
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[7]

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Records Management
In this first chapter, before getting into the specifics of the Alfresco implementation
of Records Management, let's examine in detail exactly what records are and the
reasons why Records Management is important for organizations of all sizes.

In this chapter, we will cover:

•	 What a record and Records Management are
•	 What we mean by a records lifecycle
•	 The difference between Document and Records Management
•	 The benefits of Records Management

What is a record?
Let's start with a definition of what a record is. The ISO 15489 definition of a record
is as follows:

Records contain "information created, received, and maintained as evidence and
information by an organization or person, in pursuance of legal obligations or in
the transaction of business".

ISO 15489 is an international standard issued by the International
Organization for Standardization (ISO) that specifies high-level best
practices around Records Management. Many more prescriptive Records
Management standards draw heavily on the basic concepts described in
ISO 15489, like the US Department of Defense's (DoD) 5015.2 specification
and the European MoReq specification. More information about ISO 15489
and the DoD 5015.2 can be found in Appendix A (which is available for
download from the Packt Publishing website).

Records Management

[10]

The ISO 15489 standard distinguishes a record from an ordinary document with
this definition:

A document is "recorded information or an object which can be treated as a unit".

In short, records are a subset of all documents that enter or that have been created
within an organization. Records are that group of documents which contain
information about the actions, decisions, and operations that have occurred in
the organization.

As a rule of thumb, if you can answer 'yes' to any of these questions, then the
document being considered should be classified or declared as a record:

•	 Does it support or document a transaction?
•	 Does it provide information used in making a business decision?
•	 Does it document actions taken in response to an inquiry?
•	 Does it document the reasoning for creating or changing a policy?
•	 Does it document your business process?

It is useful to note that some things are generally not considered to be records. These
include such things as copies of records made for your reference, document drafts
that have not been published, notes that have not been shared with colleagues, and
envelopes used for routing. The specific records maintained by any one organization
will differ based on the nature of the organization. Examples of records include items
such as facility blueprints, bank records, board minutes, contracts, correspondence,
deeds for property owned, general ledgers, insurance policies, meeting minutes,
organizational charts, patents and trademarks, payroll information, personnel
folders, policy and procedures, research data, protocols, quarterly reports, and
technical system documentation.

Records can be stored on paper, electronic files, e-mail, microfiche, audiotapes,
videos, databases, photographs, and other media. Information in voice mail and
instant messaging can also be considered as records. Even information exchanged
with Social Media tools and software can be considered as records, such as
information stored in microblogs (for example, Twitter tweets), content posted to
social networking sites like Facebook and LinkedIn, blog posts, and wikis.

Electronic Records Management (ERM) systems often separate records into two
categories—electronic and non-electronic or physical. Electronic records can be
stored directly in the repository of the Records Management system and have the
advantage of being quicker and easier to search and retrieve. Non-electronic records,
like those stored on paper or microfilm, are not stored digitally, and must be tracked
by their physical location.

Chapter 1

[11]

What is Records Management?
The ISO-14589 definition for Records Management is as follows:

"Records Management is the field of management responsible for the efficient and
systematic control of the creation, receipt, maintenance, use, and disposition of
records, including the processes for capturing and maintaining evidence of and
information about business activities and transactions in the form of records."

While Records Management is a vital tool for companies to address governance,
compliance, and retention requirements, the benefits of Records Management go
beyond government regulations. For example, the use of Records Management
improves a company's overall data management processes, particularly in the
areas of data security and data access.

Electronic Records Management
Records Management systems that use software to automate the management of
records are called Electronic Records Management (ERM) systems. This book
discusses Alfresco, which is an example of an ERM system. ERM systems are not
limited to managing only electronic records; non-electronic records can also be
tracked with ERM systems.

Record lifecycles
A distinguishing feature of a record, compared to a document, is that every record
has a lifecycle. When a record is initially filed and declared, the lifespan of the record
is implicitly defined. That definition includes how long it will be usable, and at
what point in time will it be either moved to permanent archival or destroyed. Best
practice Records Management, as derived from the ISO 15489 definition of Records
Management above, defines the following steps in the lifecycle of a record:

•	 Creation, receipt, and capture of a document
•	 Classification, filing, and declaration of the document as a record
•	 Maintenance, use, storage, and retrieval of the record
•	 Disposal of the record

Throughout the course of daily business transactions, documents are typically
received, created electronically, or captured by scanners and then converted into
electronic image files. Documents are then filed within the Records Management
system and declared to be records.

Records Management

[12]

Within the Records Management System, on a daily basis, records will be searched
for and retrieved, viewed, and used, as needed. Ultimately, the life of the record
comes to an end and it is routed through its final disposition step. Typically, some
small number of records, because of their long-term historical importance, will be
moved to a long-term archival location for preservation. But most other records will
be destroyed in the final step of their disposition.

Much of the remainder of this book discusses the specifics about how the Alfresco
ERM system manages records and each of these steps in the record lifecycle. We'll
go over these steps in much greater detail in later chapters.

The following figure summarizes the lifecycle of a record:

Until about 25 years ago, Records Management focused almost exclusively on the
management of paper records. Microfilm and microfiche were occasionally used
to store records, but the bulk of records were in paper. As offices were automated
with desktop computers, electronic documents and records became more common.
Today, most new documents created in offices are created electronically.

Electronic Records Management focuses primarily on the management of
unstructured documents. While structured data has a rigid data structure, like
the information stored in the schema fields of a database, unstructured data refers
typically to documents that have been created without following a rigid data
model. Because something unstructured is less predictable than something which
has a structure, the management of unstructured data is a more complex problem.
Document and Records Management systems were designed specifically for dealing
with unstructured documents. AIIM found in a survey taken in mid-2009 that 70
percent of organizations have seen huge growth in the volume of the electronic
records that they manage, while somewhat surprisingly, as many as 56 percent of
organizations say that their volume of paper records are also continuing to increase,
although not as quickly as their electronic records.

Chapter 1

[13]

How does Records Management differ from Document Management?

If you already have a Document or Content Management System, you may wonder
if that system can provide the same level of functionality and benefits that a Records
Management System would provide. The two are similar, but Records Management
offers unique capabilities not found in a standard Document or Content
Management system.

The two types of systems are very closely related, but distinctly different. Document
Management systems are typically deployed to enable departmental sharing of
documents and to manage document revisions. Document Management systems often
lack certain key functions that are needed to perform effective Records Management.

Because of the close relationship between Document and Records
Management, a number of vendors combine the two types of systems into
one, namely, an Electronic Document and Records Management system
(EDRMS). This is usually a good approach, since not all documents are
records and often a document may need to be rewritten and versioned
multiple times (document operations) before it is ultimately filed and
declared as a record.

Records are really a special kind of document and often a record begins its 'life' as
a standard document. At some point, the document gets declared to be a record
and thereafter takes on the special behaviors of a record. The relationships and
differences between documents and records are summarized in the following table:

Document Management Records Management

Stored
Objects

A Document is stored information
that contains structured and
unstructured data. Documents are
often associated with metadata; a
set of properties or attributes that
further describe or summarize
document content.

Records are a special kind of
document. Like documents,
records can be structured or
unstructured data. Records can also
have metadata. Records contain
information that is used for making
business decisions. Lifecycle
instructions get assigned to records
that describe how long the record
should be stored and how to dispose
of the record at the end of the
lifecycle.

Records Management

[14]

Document Management Records Management

Static versus
Dynamic

Documents can be very dynamic
and support frequent revisions and
updates.

Records are generally static and are
not intended to be altered unless
and until the lifecycle of the record
indicates that they need to be
superseded.

Object
Security

Most Document Management
systems have capabilities for
security and privileges, but it isn't
strictly required.

Records Management is very strict in
specifying the security of records—
who can declare and access records,
and who can approve final record
disposition.

Auditability

Document Management Systems
provide audit capability to
show the complete history of
changes made by the authors of a
document.

Auditability plays a key part in
Records Management. This involves
being able to see where records are in
their lifecycle and who has accessed
and modified them.

Management
Software

Document Management software
focuses on searching and retrieving
document content. Document
Management systems control the
creation of document versions and
support the locking of documents
checked-out for revisions.

Record Management software
is complementary to Document
Management. Once a document
is declared to be a record, the RM
system will ensure that the record
is not altered. Records are filed or
categorized based on a file plan.
Records are then disposed of at the
end of the record's life, based on the
record disposition schedule.

Workflow

Workflows direct how documents
flow through the organization and
how users within the organization
act on the data contained in the
document.

The record disposition schedules are
the instructions for a record lifecycle
and are a special kind of workflow
that is associated with a record.
Compared to document workflow,
record workflow is typically much
simpler, usually involving just a few
steps.

Object
Disposal

Document Management systems
don't have strict requirements
about when documents should be
deleted and often no documents
are ever deleted.

The destruction of records is
usually regulated by laws. Federal
agencies often transfer records to be
permanently archived to NARA, the
National Archives.

Chapter 1

[15]

Benefits of Records Management
Records Management provides the following benefits to organizations:

•	 Legal compliance
•	 Accountability
•	 Preservation of assets
•	 Efficiency
•	 Preparedness
•	 Security
•	 Good business

Records Management is about complying
with legal requirements
Records Management is an important support tool that enables organizations to
comply with legal requirements. One of the most compelling reasons for adopting a
Records Management system is to be able to produce evidence relative to litigation
brought against an organization in a timely manner. Electronic Records Management
can do just that. It can be used to quickly search and find the evidence that can help
to either prove or disprove compliance with regulations or to supply information
relevant to e-discovery requests.

Unfortunately, almost all companies will need to defend themselves against
lawsuits at some point in time. It may seem hard to factor potential litigation into
the Return on Investment (ROI) calculation for Records Management when there
is no immediate litigation pending, but it is usually too late to implement a Records
Management system once faced with a lawsuit.

Litigation can be extremely expensive. The average cost for defending a lawsuit in
the United States exceeds $1.5 million per case and more than a quarter of that cost is
IT-related. In 2009, 22 percent of all companies and 36 percent of companies valued
at more than $1 billion had more than 20 lawsuits brought against them with only 27
percent of companies having no lawsuits.

Records Management

[16]

Regulatory compliance
Regulatory compliance has continually been ranked as a very high priority for both
business and IT. In the last decade, organizations have come under an increasing
number of local, state, federal, and industry regulations. By some estimates, there
are more than 8500 state and federal regulations in the United States that involve
Records Management. The regulatory landscape is constantly changing with
regulations being added, rewritten, or retired.

Non-compliance with these government regulations can result in severe penalties
that include fines, customer and shareholder lawsuits, and negative publicity.
In 2009, 34 percent of companies were involved in litigation due to regulatory
proceedings brought against them.

Organizations are also often bound by compliance issues relative to internal business
practices and corporate governance. Typically, any process, at some point, may need
to be documented or audited to ensure that the correct operation falls in the realm
of internal compliance. This might include, for example, documenting and enforcing
standard operating procedures or documenting processes like those in accounts
payable or with the steps of a hiring process. Corporate governance and compliance
is relevant for any department within an organization like finance, engineering, IT,
sales, and marketing.

Often, regulations don't specifically require the use of Records Management software
for compliance, and Sarbanes-Oxley is one prominent example of this, but in order to
cost-effectively satisfy the need for creating the audit trails requested by regulations,
an automated system for Records Management almost becomes mandatory.

Authority Documents and compliance
Organizations are required to comply with numerous types of regulations,
guidelines, policies, procedures, principles, and best practices. The documents
in which the requirements for these many different types of compliance are
written are called "Authority Documents".

It is not uncommon for certain types of records to fall under multiple authorities.
Sometimes, even the policies suggested by two relevant Authority Documents will
conflict. Typically, the conflict is with the length of the document retention period. In
those cases, the longer of the two specified retention periods is typically used. But it
is important to document the reasoning used in compiling the retention policies that
you ultimately implement.

Chapter 1

[17]

Without knowing what Authority Document requirements your organization is
bound by, it isn't possible to fully set up and configure your Records Management
System. You'll need to do some research. Exactly which Authority Documents your
organization will need to comply with will depend on your type of business or
operation. One of the first steps that you will need to do in setting up your Records
Management system will be to find out which Authority Documents your business
is affected by.

One group called the Unified Compliance Foundation (UCF) has compiled and
cross-referenced requirements from most state and federal Authority Documents
and mapped those requirements to different disciplines and industries. Their
research is not free, but it can serve as a useful starting point when determining
which Authority Documents are important for your organization.

Once you know which Authority Documents you are targeting to support your
Records Management system, you will then need to map the requirements from
those authorities back to the types of records that you will be storing. Many of the
requirements from the Authority Documents will be realized by implementing them
as steps of the disposition lifecycle schedule for the appropriately affected records.

E-discovery
In addition to regulatory compliance, Records Management is an important legal
component of e-discovery. E-discovery is the process in civil and criminal litigation
where electronic data is requested, searched, and produced for use as evidence.

There are similarities and even overlaps in the compliance and e-discovery processes.
Often records are asked to be produced as evidence of regulatory compliance.
Like compliance, failure to respond in a timely way to an e-discovery request can
have significant consequences that include fines, monetary sanctions, and criminal
penalties. In cases where records should have been preserved but which cannot be
produced, the jury can be instructed that it is likely there was something bad to hide.

In December 2006, the Federal Rules of Civil Procedure (FRCP) were updated
to consider electronic data as part of the discovery process. Basically, all of an
organization's information is subject to e-discovery, unless it is "not reasonably
accessible due to undue burden or cost". That includes all information that is stored
in desktops, laptops, servers, and networked storage systems. The changes to the
FRCP require that companies be able to access and search electronic information
quickly in the event of litigation.

Records Management

[18]

The following table summarizes some recent cases where significant fines were
levied against companies because of lapses with the way e-discovery information
was (or was not) produced. What stands out in these examples is that the
organizations listed are some of the most venerable and sophisticated companies
in the United States. It shows that no companies are immune from complying with
e-discovery requests:

Organization Reason for e-discovery fine Fine and date
Morgan Stanley E-mails created during a company merger

were improperly deleted. Additional backup
tapes found during the investigation were not
later reported.

$1.58 billion fine
May 2005
Later overturned,
but not because of the
e-discovery problems

UBS Warburg E-mails were deleted in violation of a court
order. Unable to produce backup tapes. Jury
told that missing evidence may be a sign that
something is being hidden.

$29.3 million
April 2005

Lucent
Technologies Inc.

Records produced for a Securities and
Exchange Investigation were incomplete.

$25 million fine
May 2004

Morgan Stanley Failure to produce e-mail in a timely
manner as part of a Securities and Exchange
investigation.

$15 million fine
May 2006

Banc of America
Securities

Failure to produce e-mail in a timely manner
and failure to preserve documents related to
on-going litigation.

$10 million fine
March 2004

Philip Morris USA
(Altria Group)

Over two years, deleted all e-mails over 60
days old when under legal order to preserve
documents related to on-going litigation.

$2.75 million fine
July 2004

J. P. Morgan Failure to produce e-mails requested by the
Securities and Exchange commission related
to stock analyst misconduct.

$2.1 million fine
February 2005

Besides the fines that can be imposed for the inability to comply with e-discovery
requests, the negative publicity that an organization receives from fumbles in
responding can prove embarrassing to the organization. For example, in an
investigation by the FTC of Countrywide, Bank of America's mortgage servicing
unit, on risky lending practices and imposing misleading and excessive fees, the FTC
chairman made the disparaging comment that was widely reported in the media
that "the record-keeping of Countrywide was abysmal. Most frat houses have better
record-keeping than Countrywide."

Chapter 1

[19]

Often when an e-discovery request catches an organization totally unprepared,
the organization is forced to respond reactively. A better and more pre-emptive
approach is to be proactively prepared for any type of request that may come in.
Being prepared allows you to reduce your risks and your ultimate costs. Having
information and evidence in hand early on can give you time to review and
understand your situation from the contents of the data. This allows you to be
prepared for, and be able to appropriately defend yourself, if and when needed.
A Records Management system can help you to be prepared.

Records Management is about ensuring
accountability
Records Management is a powerful tool for providing accountability and
transparency. Records contain the historical details and reasoning behind why
certain policies and decisions were made. Records can prove that an organization
acted responsibly and with good intent (or not).

But for records to be accepted, they must be trustworthy and believable. They must
be accurate and complete. They must be verifiable. Good Records Management
systems, practices, and processes are the vital elements that can ensure that records
are trustworthy.

When speaking about accountability and transparency in government, Barak
Obama declared that "The Government should be transparent. Transparency
promotes accountability and provides information for citizens about what their
Government is doing. Information maintained by the Federal Government is a
national asset".

But while accountability is something that is often spoken of relative to state
and federal governments, accountability is a concept that is not limited to just
governments. Governments are accountable to their citizens. Non-government
organizations are accountable to their members, their employees, their customers,
their communities, and their environments.

Accountability mandates that organizations keep accurate records that can later
be reviewed, accessed, and analyzed by individuals inside the organization, and
sometimes external to it.

Records Management

[20]

Records Management is about preserving
assets
At the heart of Records Management is the idea that records are retained and
preserved to ensure that information is available for continued use and reuse.
The required retention time for records varies widely. While the majority of
records typically have only short-term value and are ultimately destroyed, most
organizations also have a category of records, often representing a fairly large
fraction of their total number, that need to be retained and preserved for long-term
financial, historical, or cultural reasons. This category of records often needs special
consideration to ensure that records will remain usable for long periods of time.

Electronic Records Management offers clear benefits over paper-based record
systems. The process automation capabilities of ERM make the capturing and
ingestion of record data fast and efficient. ERM records can be searched and we can
retrieve orders of magnitude more quickly than with paper systems, and backups
or copies of the electronic data can be made easily so that data can be safely stored
in off-site locations. Because of these benefits, organizations are increasingly
abandoning paper and turning towards the digital storage of their information.

While ERM can offer impressive benefits in terms of efficiencies and cost savings,
digital assets themselves can be quite fragile, if not properly maintained. Two main
areas of concern about preservation of digital assets are the long-term viability of the
storage media and the data formats used to store the records.

Magnetic and Optical storage devices are surprisingly short-lived. Both types of
media are subject to bit rot, the process where bits become corrupted because they
lose their magnetic orientation, or the disk material itself breaks down. Hard drives,
for example, have only a three to six-year lifespan expectancy. Magnetic tapes are
expected to last ten to twenty years, and the lifespan of CD-ROMs and DVD-ROMs
is in the range of 10 to 100 years.

Properly maintained, despite being extremely fragile, some paper has been able
to last for thousands of years, and no doubt with the right amount of scientific
research, proper attention, and careful handling, the lifespan of digital media could
be extended to go beyond the current expected lengths. Both paper and disks tend to
do better in cool, dark environments with low humidity. But it should be a given that
the lifespan of storage devices will be relatively short.

As ERM systems have centralized storage, storage media degradation for ERM
systems isn't really an issue. Because all data is stored centrally, rather than needing
to examine and treat the storage media of each asset as a special case, the storage and
management of all records can be treated holistically.

Chapter 1

[21]

However, Records Management systems aren't static. As time passes, ERM systems
will obviously evolve. Records Management systems will be upgraded, hopefully
on a regular basis, and data and records will be migrated to newer storage hardware
and improved ERM software. Data migrations performed in support of regular
maintenance and upgrades won't always be trivial, but with careful planning,
the work involved to migrate records to new software and hardware should be
straightforward.

So from a data preservation level, the worry is not so great that records stored in
actively maintained and regularly backed-up Records Management systems would
somehow be lost because of degradation of storage media. The real worry is whether
the format that digital assets are stored in can continue to be readable.

Data file formats change very rapidly. With some software products, every new
release may involve changes to the format in which the data is stored. Without the
proper software reader to read a digital asset, the stored data becomes, in effect,
useless. A common solution to reduce the size of this problem is to limit or convert
the formats of data being stored to a small set of stable core data types. This is an
important problem to be aware of when designing and planning for a Records
Management systems that requires long-term record preservation. This is one topic
that we'll expand on in greater detail in Chapter 4 relative to the Content Model, file
content, and data types.

Records Management is about efficiency
Keeping records for a period past the necessary retention period results in
inefficiencies. Storing expired documents simply takes up space and clogs up
the Records Management system.

When records are kept longer than needed, those outdated records can be
unnecessarily considered during the discovery process. When performing
e-discovery key-word searches, outdated documents can be returned as
possible search candidate matches, even though they are no longer relevant.

For example, consider an e-discovery request made to the chemical company
DuPont. To respond to the request, the company found that it was necessary to
review 75 million pages of text over a period of three years. At the end of the
e-discovery, they realized that more than half of the documents they examined were
outdated and past their retention period. If Records Management guidelines had
been applied prior to the discovery, outdated documents would have been properly
disposed of, and the discovery process could have been performed much more
efficiently. That could have saved DuPont $12 million.

Records Management

[22]

In this example, greater efficiency could have been achieved by eliminating
obsolete records, thus minimizing the volumes of data examined during e-discovery.
Eliminating obsolete records also reduces the legal risks that could result from
obsolete content that may have been in those records.

Having a Records Management system in place prior to an e-discovery request can
be an insurance policy that could ultimately save you many times over the cost of
the system itself.

Records Management is about being prepared
Records Management is about being prepared, being prepared for the unexpected.
No one can see the future, but disasters do happen, and unfortunately, on an all too
regular basis.

On the morning of September 11, 2001, terrorists crashed airliners into each of the
Twin Towers of the World Trade Center in New York City. The death toll that day
was nearly 3000 people. The destruction was in the billions of dollars and the event
seriously impacted the economy in New York City and affected the psyche of nearly
every citizen in the United States. Lives and businesses were disrupted and changed.

One business directly affected by this disaster is the law firm of Sidley Austin Brown
& Wood LLP (SAB&W), which occupied the fifth fourth to the fifty ninth floors of
the North Tower. While 600 SAB&W employees worked in the Trade Center offices,
the firm suffered only a single death that day. Unfortunately all physical assets at the
location were lost.

Luckily SAB&W was prepared. The firm had a solid disaster recovery plan and
within hours after the disaster, the plan was in full effect. By making use of vital
records maintained offsite that included information about floor plans, personnel
locations, procedures, clients, and vendors, the firm was able to spring into action.
The vital records that they had access to included important insurance records. From
these records, they were quickly able to determine that their total loss would be fully
covered by their insurance and they were also able to quickly start the processing of
their insurance payout.

Based on personnel records, an intensive search was immediately initiated to locate
all employees from that location. A new office space of similar size was leased at
another location in New York City hours after the event. Computers, networking
equipment, and furniture were purchased.

Chapter 1

[23]

Backup tapes kept in Chicago of e-mails and other data from the New York office
were identified. Within three days, e-mail and voice mail were fully restored.
On the fourth day, the document management system was available again and
temporary office space was being set up. Somewhat unbelievably, within only
one week, SAB&W was back up and running and in reasonable operational shape.

Unfortunately, most stories of disaster can't boast of such quick and successful
recoveries. Consider what happened at Embry-Riddle Aeronautical University
near Daytona Beach, Florida in late December, 2006. Four Christmas day tornadoes
struck the area. With winds as strong as 159 mph, mobile homes were destroyed
and apartment buildings in the area had their roofs torn off. Some of the worst
damage from the tornadoes occurred at Embry-Riddle. The storm tossed one of the
Embry-Riddle airplanes into the school's main administration building, Spruance
Hall. The maintenance hangar, 50 of their 65 airplanes, and Spruance Hall were all
destroyed. Total damage totaled $60 million.

Embry-Riddle's Spruance Hall housed the financial aid, the bursar, the president,
and general administration offices. The day after the tornado, paper documents
literally covered the campus grounds around the area. But in this case, unlike
SAB&W, Embry-Riddle was not adequately prepared. They had no disaster or
business continuity plan. The mentality had been that disasters are something
remote and can never happen to us. But, unfortunately, when disasters do happen
and you are not prepared, the results can be devastating.

Hurricane Katrina is another disaster that caught many unprepared with
significantly worse consequences than that of Embry-Riddle. Katrina hit the Gulf
Coast area in late August 2005 with torrential rains and flooding that caused
widespread and serious damage. Katrina is considered to be one of the most
catastrophic natural disasters in all of U.S. history. Damage was reported in Texas,
Louisiana, Mississippi, and Alabama. Homes and businesses were destroyed,
hundreds of lives were lost, and tens of thousands of lives were deeply disrupted.

The widespread loss and damage to documentation and records was a major tragedy
of the Katrina disaster, and much of the damage was as a result of the heavy reliance
on the use of paper records. It is another reminder that disasters like floods, fires,
tornados, and hurricanes come with little warning and can bring about devastating
results. The previous largest disaster prior to Katrina for losing historical documents
happened in Florence, Italy in 1966 due to flooding.

In the case of Katrina, the loss or damage of records wasn't limited to individuals;
institutions and government agencies were heavily affected too. Historical treaties
and photographs were destroyed. Vital records of all kinds were affected by Katrina
that included medical records, school records, law enforcement records, birth
records, and marriage and driver's licenses.

Records Management

[24]

After documents come into contact with water or moisture, it takes only 48 hours
before mold starts growing, and after that, the deterioration of paper documents
accelerates quickly. The flood waters in many areas hit by Katrina were several feet
high, forcing many residents to evacuate and leave behind their belongings, only
being allowed to come back into the area many days later. But by that time, for many
documents that were damaged, it was too late.

Some buildings in New Orleans containing legal and vital records were bulldozed
before the records could be removed. Emergency teams were initially told to discard
damaged records to keep city residents safe from molds and other contaminants, a
policy that was later retracted, but which resulted in the unnecessary loss of many
valuable records.

The loss of legal documents in the Gulf region because of the Katrina disaster was
stunning. One-third of the 5000 to 6000 lawyers in Louisiana lost all of their client
files. The Louisiana state supreme court lost a significant number of their appellate
files and evidence folders. Much of the problem resulted because records were often
stored in basements or the lower levels of buildings. For example, court files in
Mississippi and Louisiana were both stored in courthouse basements, and in both
cases, many of the paper records were irrecoverably destroyed.

All told, an incredible number of records were simply lost. Many others, while
damaged, were recoverable and needed to be painstakingly restored. But perhaps
most frustrating was the fact that many of the documents that actually did survive
the storm were inaccessible for weeks. For example, in New Orleans, the vital
records office for Louisiana stored state birth certificates, death certificates, marriage
licenses, and divorce papers. Most of the records at this location were paper and
dated back over 100 years. But in the aftermath of the storm, the state records office
was nearly shut down, being manned by only five percent of its normal staff, making
records accessible only after very long waits.

Katrina hit medical records very hard too. Estimates are that tens of thousands
and possibly millions of pages of healthcare records, files, and charts were lost in
private-practice offices, clinics, and hospitals. More than one million people were
separated from their healthcare records during the disaster, with many people forced
to relocate to other parts of the country, and of those receiving treatment, many
could not continue because the record of their diagnosis and treatment was lost.

Chapter 1

[25]

Much of the damage from Katrina was as a direct result of the fact that most records
were stored on paper. The Tulane Medical Center located in New Orleans presents
an interesting contrast to most other New Orleans hospitals. The Tulane Medical
Center maintained their medical diagnostic records electronically. Their electronic
records included lab, radiology, cardiology, and nursing documentation. Because the
data was stored electronically and not physically located in New Orleans, availability
of this data was not affected at all because of the disaster.

Disasters are good teachers. After the event at Embry-Riddle, creating and
maintaining a disaster recovery plan immediately became a top priority for the
school. The school invested in Document Imaging and Records Management
software, and after seeing firsthand what could happen when planning and
preparation for worst-case scenarios aren't done, the faculty and staff of the
university resolved that they did not want to see a repeat episode.

Similarly, less than one year after Katrina, officials, archivists, and records managers
from nine Southeastern states affected by Katrina's destruction gathered to begin
planning ways to be better prepared for future Katrina-scale disasters. A big
deficiency noted in the emergency response to the disaster was the disconnection
between archivists and state emergency planners. After meeting, the states resolved
in the future to include state archives as part of any emergency response.

Whether they are man-made or natural, disasters happen. Preparation and planning
are key for being able to successfully cope with disasters.

Records Management is about coming to
grips with data volumes
The volume of data within organizations is growing at a phenomenal rate. In fact,
International Data Corporation (IDC), a research and analyst group, estimates that
the volume of digital data is doubling every 18 months. And that growth is having
a huge impact on organizational IT budgets. For example, if we assume that the
average employee generates 10 gigabytes of data per year, and storage and backup
costs are $5 per gigabyte, a company with 5000 employees would pay $1.25 million
for five years of storage.

Consider the costs of e-discovery. "Midsize" lawsuits that involve e-discovery
typically result in the processing of about 500 GB of data at a cost of $2.5 to $3.5
million. Lawyers and paralegal staff must review the content of the data, determine
which documents are relevant, redact, or black-out parts of the documents
considered private or company confidential, and finally, output the data into a
common data file format like PDF that will be used for delivery to the requester.

Records Management

[26]

The goal of Records Management is to allow organizations to cut back on what
information must be retained. Organizations with no Records Management policies
in place have no clear guidelines for what documents to save and what documents
to discard. The end result is that these organizations typically save everything.

And we've seen, trying to save everything comes at a steep cost. Keeping records
that should have been destroyed earlier means that more storage space is required.
It means that backup times are longer. It means that data searches are slower because
there is more information to search. It means that people's time gets wasted when
irrelevant records turn up in search results. Records Management helps clear the
clutter and bring greater efficiency.

Records Management isn't going to be able to put a stop to the general upward
trend of creating and storing more information, but by strictly following Records
Management retention schedules, organizations should be able to significantly
reduce the volume of data that they do keep.

Records Management is about security
The security of records is an important issue and the responsibility of the Records
Management system. This is one area where an Electronic Records Management
system really shines when compared to manual methods for managing records.

A major advantage of ERM is that the application of security and access controls
over electronic records and folders is much easier to implement and can be
applied in a much more granular way than over physical folders and records.

Records stored on paper and other non-electronic media are very hard to tightly
secure, especially when the requirements for access control become even moderately
complex. Physical records require that filing cabinets and storage locations be
appropriately secured. They typically need to be controlled and managed by trusted
records librarians. Physical Records Management requires far greater day-to-day
supervision by people and, because of that, is subject to many more points of
potential security lapses than with an automated system.

That is not to say that the physical security of the computer hardware used to run
the Records Management system is not important.

With ERM, access rights can be changed or revoked, as needed, protecting records
from unauthorized users. The system is able to validate that the data managed
is accurate and authentic. An ERM system can also provide an audit trail of all
activities for all records and thus demonstrate compliance.

Chapter 1

[27]

Records Management is about good business
Regulations usually contain detailed instructions about how records should be
handled, but often the regulations don't actually mandate that a formal Records
Management system be used. But really, what's the alternative?

Not having a Records Management program at all is a recipe for problems, if not
disaster. Without a Records Management system in place, tracking down the records
that document policies, procedures, transactions, and decisions of an organization
becomes extremely difficult or next to impossible.

We've discussed how Records Management can enable important business benefits
like accountability, compliance, efficiency, and security. Taken as a whole, these
benefits are really the characteristics of doing good business. And at its very essence,
that's what Records Management is all about.

Summary
Before getting into the details of how Alfresco implements Records Management,
this first chapter presented an overview of general Records Management concepts
and the benefits that can be achieved by using Records Management.

In this chapter, we covered:

•	 The meaning of a record and the lifecycle of a record
•	 The high penalties that could be imposed due to inadequate Records

Management
•	 The difference between Document and Records Management
•	 The benefits of Records Management

We've seen that records are documents that have been used when making a business
decision, a transaction, or a communication of a policy. A Records Management
System manages the complete lifecycle of a record, from its creation and declaration,
through its retention period, and ultimately to its final disposition, which typically is
either permanent archival or destruction.

Software Applications that are designed to handle Records Management are
called Electronic Records Management (ERM) systems. ERM systems can greatly
speed and automate Records Management. They are especially well suited for
managing large volumes of electronic data, like e-mail, which organizations now
are forced to deal with.

Records Management

[28]

Records Management helps organizations achieve compliance with financial
regulations, audit requirements, and e-discovery requests. It enables accountability
and transparency and ensures the authenticity and trustworthiness of the records
being managed.

Despite ever-changing software and hardware technologies, a Records Management
system preserves your records, which are important business assets, for either a
short-term or potentially a very long-term, based on assigned retention schedules.

Records Management facilitates organizational efficiencies. Information can be
found and shared more easily. Records Management removes unneeded or obsolete
records, freeing up storage space.

Records Management supports risk management, keeping your organization
prepared, for anything from an e-discovery request to disaster continuity.

Furthermore, Records Management security provides fine-grained access control
rights for your data so that people have access to only the information that they
are privileged to see.

The benefits of Records Management are many, but one of the most compelling
reasons for implementing Records Management is that it's simply good business.

In the next chapter, we will start looking at Alfresco in detail. In that chapter,
we will see how to install both Alfresco and the Records Management module.

Getting Started with
the Alfresco Records
Management Module

Before we get started with discussing the details of the Records Management
software implementation, it is important to point out that the software
implementation is only one element of a successful Records Management program.
People, process, and culture often are as big, if not bigger, components than the
software. With that in mind, let's now shift gears and begin our discussion of
Alfresco Records Management software.

In this chapter, we will describe:

•	 How to acquire and install Alfresco Records Management software
•	 How to set up the Records Management site within Alfresco Share
•	 Some of the internal workings of Alfresco Share involved in creating the

Records Management site

The Alfresco stack
Alfresco software was designed for enterprise, and as such, supports a variety of
different stack elements. Supported Alfresco stack elements include some of the
most widely used operating systems, relational databases, and application servers.

Getting Started with the Alfresco Records Management Module

[30]

The core infrastructure of Alfresco is built on Java. This core provides the flexibility
for the server to run on a variety of operating systems, like Microsoft Windows,
Linux, Mac OS, and Sun Solaris. The use of Hibernate allows Alfresco to map
objects and data from Java into almost any relational database. The databases
that the Enterprise version of Alfresco software is certified to work with include
Oracle, Microsoft SQL Server, MySQL, PostgresSQL, and DB2. Alfresco also runs
on a variety of Application Servers that include Tomcat, JBoss, WebLogic, and
WebSphere. Other relational databases and application servers may work as well,
although they have not been explicitly tested and are also not supported.

Details of which Alfresco stack elements are supported can be found
on the Alfresco website: http://www.alfresco.com/services/
subscription/supported-platforms/3-x/.

Depending on the target deployment environment, different elements of the Alfresco
stack may be favored over others. The exact configuration details for setting up the
various stack element options is not discussed in this book. You can find ample
discussion and details on the Alfresco wiki on how to configure, set up, and change
the different stack elements. The version-specific installation and setup guides
provided by Alfresco also contain very detailed information.

The example description and screenshots given in this chapter are based on the
Windows operating system. The details may differ for other operating systems, but
you will find that the basic steps are very similar. In later chapters, we'll be focusing
on the details of the application itself, and as such, the descriptions and screens that
we'll look at in those chapters will apply to any Alfresco installation, regardless of
the specific stack elements that it is running on.

Additional information on the internals of Alfresco software can
be found on the Alfresco wiki at http://wiki.alfresco.com/
wiki/Main_Page.

Alfresco software
As a first step to getting Alfresco Records Management up and running, we need
to first acquire the software. Whether you plan to use either the Enterprise or the
Community version of Alfresco, you should note that the Records Management
module was not available until late 2009. The Records Management module was
first certified with the 3.2 release of Alfresco Share. The first Enterprise version of
Alfresco that supported Records Management was version 3.2R, which was released
in February 2010.

Chapter 2

[31]

Make sure the software versions are
compatible
It is important to note that there was an early version of Records Management that
was built for the Alfresco JSF-based Explorer client. That version was not certified
for DoD 5015.2 compliance and is no longer supported by Alfresco. In fact, the
Alfresco Explorer version of Records Management is not compatible with the Share
version of Records Management, and trying to use the two implementations together
can result in corrupt data.

It is also important to make sure that the version of the Records Management module
that you use matches the version of the base Alfresco Share software. For example,
trying to use the Enterprise version of Records Management on a Community install
of Alfresco will lead to problems, even if the version numbers are the same. The 3.3
Enterprise version of Records Management, as another example, is also not fully
compatible with the 3.2R Enterprise version of Alfresco software.

Downloading the Alfresco software
The easiest way to get Alfresco Records Management up and running is by doing a
fresh install of the latest available Alfresco software.

Alfresco Community
The Community version of Alfresco is a great place to get started. Especially if you
are just interested in evaluating if Alfresco software meets your needs, and with no
license fees to worry about, there's really nothing to lose in going this route.

Since Alfresco Community software is constantly in the "in development" state and
is not as rigorously tested, it tends to not be as stable as the Enterprise version. But,
in terms of the Records Management module for the 3.2+ version releases of the
software, the Community implementation is feature-complete. This means that the
same Records Management features in the Enterprise version are also found in the
Community version.

The caveat with using the Community version is that support is only available from
the Alfresco community, should you run across a problem. The Enterprise release also
includes support from the Alfresco support team and may have bug fixes or patches
not yet available for the community release. Also of note is the fact that there are other
repository features beyond those of Records Management features, especially in the
area of scalability, which are available only with the Enterprise release.

Getting Started with the Alfresco Records Management Module

[32]

Building from source code
It is possible to get the most recent version of the Alfresco Community software
by getting a snapshot copy of the source code from the publicly accessible Alfresco
Subversion source code repository. A version of the software can be built from a
snapshot of the source code taken from there. But unless you are anxiously waiting
for a new Alfresco feature or bug fix and need to get your hands immediately on
a build with that new code included as part of it, for most people, building from
source is probably not the route to go.

Building from source code can be time consuming and error prone. The final
software version that you build can often be very buggy or unstable due to code that
has been checked-in prematurely or changes that might be in the process of being
merged into the Community release, but which weren't completely checked-in at the
time you updated your snapshot of the code base.

If you do decide that you'd like to try to build Alfresco software from
source code, details on how to get set up to do that can be found on the
Alfresco wiki: http://wiki.alfresco.com/wiki/Alfresco_SVN_
Development_Environment.

Download a Community version snapshot build
Builds of snapshots of the Alfresco Community source code are periodically taken
and made available for download. Using a pre-built Community version of Alfresco
software saves you much hassle and headaches from not having to do the build
from scratch. While not thoroughly tested, the snapshot Community builds have
been tested sufficiently so that they tend to be stable enough to see most of the
functionality available for the release, although not everything may be working
completely.

Links to the most recent Alfresco Community version builds can be found
on the Alfresco wiki: http://wiki.alfresco.com/wiki/Download_
Community_Edition.

Alfresco Enterprise
The alternative to using Alfresco open source Community software is the Enterprise
version of Alfresco. For most organizations, the fully certified Enterprise version of
Alfresco software is the recommended choice. The Enterprise version of Alfresco
software has been thoroughly tested and is fully supported.

Chapter 2

[33]

Alfresco customers and partners have access to the most recent Enterprise
software from the Alfresco Network site: http://network.alfresco.
com/. Trial copies of Alfresco Enterprise software can be downloaded
from the Alfresco site: http://www.alfresco.com/try/. Time-limited
access to on-demand instances of Alfresco software are also available and
are a great way to get a good understanding of how Alfresco software
works.

Installing the base Alfresco software
Once you have access to Alfresco software, the easiest way to get started with Alfresco
is to do a full installation of Alfresco on a Windows machine. With just a few steps,
you can be up and running with this procedure. The full setup on Windows installs all
components needed to run Alfresco in a self-contained way under a single directory
with no dependencies on any other files outside of the installation directory.

Running the installer
One useful technique when performing full installs of Alfresco on Windows is to
create a directory, like c:\Alfresco, and then install the new Alfresco software stack
as a subdirectory in it. It is likely that we'll want to install other versions of Alfresco
for testing and development purposes. All Alfresco installs can be kept side-by-side
in this single directory. In that way, it is easy to find and then start and stop any of
the installed versions of Alfresco, as needed.

It is also possible to install Alfresco as a service on Windows. In some situations, like
for a Windows production system, this makes life easier and minimizes the number
of DOS-based pop-up windows that you see when you start the Alfresco system. But
for development and test scenarios, it is generally easier to not install Alfresco as a
Windows service. The steps for installing Alfresco are as follows:

1. The Alfresco Enterprise version 3.3 full installation file for Windows is
Alfresco-Enterprise-3.3-Full-Setup.exe. Download this file and run it
to begin installation of Alfresco. Other installation options exist, but this one
provides the complete stack of required software for Alfresco to run, and is
perhaps the easiest and quickest way to get Alfresco installed on a Windows
machine.

Getting Started with the Alfresco Records Management Module

[34]

2. The first installation screen that you'll see is one that asks what you prefer as
the language to be installed. The default language is English. After selecting
the language, click on OK:

3. Respond Yes to the prompt to continue the installation of Alfresco:

4. Click on Next on the first screen of the Alfresco installation InstallJammer
Wizard:

Chapter 2

[35]

5. On the next screen, select the Custom install and then click on Next. The
Alfresco installer does not include Records Management as part of the
Typical install. You could still do a Typical install and then add the Records
Management modules later, but it saves some time if you install the Records
Management modules automatically as part of the wizard-driven installation:

Getting Started with the Alfresco Records Management Module

[36]

6. On the screen showing the custom components to install, make sure that
Records Management is selected. Other components like WCM or the IBM
Quickr integration may not be needed and can be left unchecked. Note that
when using Records Management on the Enterprise version, an additional
license specific to the Records Management module from Alfresco needs to
be obtained. Click on Next:

7. Next, select the location where this instance of Alfresco will be installed.
In this example, we will be installing it in a directory called Ent33 under
the Alfresco directory where we will keep all of our Alfresco full instance
installations. Click on Next to start the installation of the files:

Chapter 2

[37]

8. The installation wizard next summarizes the choices that we've made, prior
to installing the files. Verify that this is correct, and then select Next:

Getting Started with the Alfresco Records Management Module

[38]

The installation of the Alfresco files then begins:

9. The next screen prompts you to enter the password for the user admin, the
administrator of the Alfresco system. In this case, we enter admin as the
password, which is the default value most commonly used for the Alfresco
admin user. In a production environment, a more secure password should be
selected. Click on Next:

Chapter 2

[39]

10. After doing that, if you had selected the OpenOffice option on the Custom
install screen, it will start to install. OpenOffice may take a few minutes
to install:

Getting Started with the Alfresco Records Management Module

[40]

11. After that, a screen will ask if the Records Management module should be
automatically installed at this part of the wizard installation. That's what we
want, so we agree with this and click on Next:

12. After doing that, success! We should see the final screen of the installation
wizard indicating that the installation was successfully completed. Click
on Finish and the installation is over:

Chapter 2

[41]

Congratulations on the successful installation of Alfresco software!

Installing Alfresco Records Management modules
manually
In the last section, we took the easy route and installed a fresh copy of the full
Alfresco Windows setup. But what if we already have a base instance of Alfresco
installed that we wanted to add Records Management to? In that case, we need to
install the two Alfresco Records Management modules manually into the existing
instance.

We need to download the two Records Management AMP files separately.
In Alfresco 3.3, these files are named alfresco-dod5015-3.3.amp and alfresco-
dod5015-share-3.3.amp. The first of these files will be applied against the
alfresco.war file, and the second will be applied against the share.war file.
These two WAR files can be found in the tomcat\webapps directory.

Getting Started with the Alfresco Records Management Module

[42]

The Alfresco and Share applications are distributed in the WAR (short for
Web ARchive) file format.
A WAR file is a special kind of ZIP file that contains the Java classes,
XML, HTML, property, and any other files needed to run a Web
application. By dropping a single WAR file into the deployment folder
of an application server like WebSphere, JBoss, or Tomcat, the web
application contained in the WAR file can be installed. The application
server will expand the folder structure and all files contained in the WAR
the first time the application is started.
alfresco.war is the distribution WAR file that contains both the
Alfresco Explorer client and also the services and other base components
of the Alfresco repository.
share.war is the distribution WAR file for the Share application.

We need to make sure that the version of the base Alfresco install matches the
version of the AMP files that we are about to apply. If not, it is necessary to run
upgrade or patch files to bring the installation up to the right version.

Copy the file alfresco-dod5015-3.3.amp into the directory named amps at the
top level of the Alfresco installation area. Copy the file alfresco-dod5015-share-
3.3.amp into the directory named amps-share. If no directory named amps-share
exists, create it parallel to the amps directory and add the Alfresco Share AMP file
to it.

Then, in a Windows DOS Command window, navigate to the directory where
the instance of Alfresco is installed and locate the Windows Batch file called
apply_amps.bat. Before running the Batch file, note that running this will merge
Records Management functionality into the alfresco.war and share.war files.
On completion, the Batch file will delete the contents of the Alfresco and share
folders where the previous versions of the WAR files existed. If you have made any
customizations in either of these two folders, those customizations will be deleted.

To apply the Records Management AMP files, run the apply_amps.bat file from
the command line, as shown below:

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Dick>cd \alfresco\ent33

C:\Alfresco\Ent33>apply_amps

This script will apply all the AMPs in C:\Alfresco\Ent33\amps to the
alfresco.war and share.war files in C:\Alfresco\Ent33\tomcat\webapps

Chapter 2

[43]

Press control-c to stop this script . . .

Press any key to continue . . .

When instructed, follow the several messages where you will be prompted to press
a key. After the AMPs are successfully applied to the alfresco.war and share.
war files, you will see a message like the following where the time and date of the
successful installs for the AMP files are indicated:

Module managment tool available commands:

install: Installs a AMP file(s) into an Alfresco WAR file, updates if an
older version is already installed.

usage: install <AMPFileLocation> <WARFileLocation> [options]

valid options:

 -verbose : enable verbose output

 -directory : indicates that the amp file location specified is a
 directory.

 All amp files found in the directory and its sub
 directories are installed.

 -force : forces installation of AMP regardless of currently
 installed module version

 -preview : previews installation of AMP without modifying WAR file

 -nobackup : indicates that no backup should be made of the WAR

list: Lists all the modules currently installed in an Alfresco WAR
file.

usage: list <WARFileLocation>

Module 'org_alfresco_module_dod5015' installed in
'C:\Alfresco\Ent33\tomcat\webapps\alfresco.war'

 - Title: DOD 5015 Records Management

 - Version: 1.0

 - Install Date: Mon Jul 26 21:12:41 PDT 2010

 - Description: Alfresco DOD 5015 Record Management Extension

Module 'org.alfresco.module.vti' installed in
'C:\Alfresco\Ent33\tomcat\webapps\alfresco.war'

 - Title: Vti

Getting Started with the Alfresco Records Management Module

[44]

 - Version: 1.2

 - Install Date: Mon Jul 26 21:06:16 PDT 2010

 - Description: Alfresco Vti Extension

Module management tool available commands:

install: Installs a AMP file(s) into an Alfresco WAR file, updates if an
older version is already installed.

usage: install <AMPFileLocation> <WARFileLocation> [options]

valid options:

 -verbose : enable verbose output

 -directory : indicates that the amp file location specified is a
directory.

 All amp files found in the directory and its sub
 directories are installed.

 -force : forces installation of AMP regardless of currently
 installed module version

 -preview : previews installation of AMP without modifying WAR file

 -nobackup : indicates that no backup should be made of the WAR

list: Lists all the modules currently installed in an Alfresco WAR
file.

usage: list <WARFileLocation>

No modules are installed in this WAR file

No modules are installed in this WAR file.

About to clean out tomcat/webapps/alfresco directory and temporary
files...

Press any key to continue . . .

Starting the Alfresco Repository and Share
application
Both the Alfresco base software and the Records Management should now be
installed. Let's start up the application server and start looking at Share. In this
case, Tomcat is the application server that we are using.

Chapter 2

[45]

In Windows, we bring up a DOS command Window to start Alfresco. To do that,
navigate to the top of the Alfresco installation area and run the DOS batch file
alf_start.bat, as shown in the code below. Alfresco will start up and display
some configuration settings. In this case, we are using a MySQL database that
came bundled with the Windows full setup:

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Dick>cd \alfresco\ent34

C:\Alfresco\Ent33>alf_start

Starting MySQL...

Starting Tomcat...

Using CATALINA_BASE: "C:\Alfresco\Ent34\tomcat"

Using CATALINA_HOME: "C:\Alfresco\Ent34\tomcat"

Using CATALINA_TMPDIR: "C:\Alfresco\Ent34\tomcat\temp"

Using JRE_HOME: "C:\dev\Java6\jdk"

Using CLASSPATH: "C:\Alfresco\Ent33\tomcat\bin\bootstrap.jar"

C:\Alfresco\Ent33>

Two additional windows are created on startup with this configuration—one is the
Tomcat console window and the other is a window for MySQL. If you are running
an operating system other than Windows, or if you are using a different database
or application server, the behavior that you see on startup may differ. The Tomcat
console is a useful place to look when testing and developing to catch or examine in
more detail any errors that might be reported when we're running Alfresco.

If this is the first time that we've started the application server, after startup, we will
see that there are two WAR files, one for the Alfresco Repository and the other for
the Share application. Both should have been exploded or expanded to contain all
the files that were bundled in the WAR files.

WAR files are basically ZIP files where the folders and files are stored in the same
structure as they need to be located in when the application runs. The WAR files
and their corresponding exploded directories can both be found under the tomcat\
webapps directory. The folders alfresco and share along with the tomcat\shared
folder contain all the necessary Alfresco Repository and Share application files.

Getting Started with the Alfresco Records Management Module

[46]

Once the application server is fully started, you should see a message on the
application server console that says something like:

INFO: Server startup in 100093 ms

Starting Alfresco Share
The server is now up and running and we are ready to connect to the Alfresco Share
application using a web browser. Alfresco Share is a team collaboration application
built using a modern web interface. Project or topic-specific sites can be created
within Share, and Share users can get access to the different sites within Share by
becoming a site member by either invitation or by request. Members of a Share site
can share documents and use collaboration tools like blogs, wikis, and calendars for
tracking events.

We'll need to bring up a browser from a client machine running on the same
network. Alfresco Share is certified to work with various versions of web browsers
that include Firefox, Microsoft Internet Explorer, and Safari. Share also works fairly
well with Google Chrome, although Chrome is not officially supported.

For testing and development, it is often convenient to connect to the Share
application on the same machine where the server is running. This doesn't model a
typical production environment, but will be sufficient for our purposes. To connect
to the Share application running on the local server using the default configuration,
use this URL: http://localhost:8080/share. Entering this URL into the browser
location field brings up the login screen for Alfresco Share.

Share is the second generation of client applications built by Alfresco. The first
Alfresco client is still available and is bundled as part of the alfresco.war file and
can be accessed at the URL http://localhost:8080/alfresco. It is sometimes
referred to as the Alfresco Explorer client. The Explorer client was written using
an older Java UI technology called JSF (Java Server Faces), and it focused almost
exclusively on interacting with the Alfresco repository. You'll notice the difference
in the "look" between the two application technologies just by bringing up and
comparing the login screens of the two clients:

Chapter 2

[47]

We can now log in as the administrator for the application as the user admin. When
we installed the application, we selected the password admin. Entering the User Name
and Password on the login screen will give us access to the dashboard of Share.

The system administrator for Alfresco is, by default, user admin. User admin
has administrative privileges both in the Share application and also within the
Alfresco JSF client. The User Name and Password login credentials for user admin
are identical for accessing both clients. A user created to access Share will also, by
default, be able to access the JSF client, and users created in the JSF client will have
access to Share:

Getting Started with the Alfresco Records Management Module

[48]

Share dashlets
The content that appears on the home dashboard page for Share is totally
configurable. Dashlets are small applications that can independently interact with a
service for preparing and presenting targeted information to the user. The dashlets
that are available for display on the dashboard include the following:

My Profile: Picture and summary of the contact information from the user profile

Getting Started: Information and links to highlights of Alfresco Share for new or
infrequent users

Alfresco Network: Text and links that describe how to get Enterprise Edition
support from Alfresco and updates on news about Alfresco

My Calendar: A summary of upcoming events posted to the calendars of the
sites that the user is a member of

My Tasks: A list of advanced workflow tasks assigned to the user

My Sites: A list of links to the Share sites that the user has either created or is
a member of

My Site Activities: A summary of the recent actions that have occurred in the
Share sites that the user is a member of

Documents I'm Editing: A list of documents that are currently checked out to
the user from any of the Share site Document Libraries that the user belongs to

RSS Feed: A dashlet that can be configured to display any RSS feed. The default
is the Alfresco site feed

CMIS Feed: Information and links about the CMIS (Content Management
Interoperability Services) specification

Web View: A dashlet that can embed the display of the web page corresponding
to any URL

My Workspaces: A list of Document Workspaces that you are a member of
(SharePoint integration)

My Meeting Workspaces: A list of Meeting Workspaces that you are a member
of (SharePoint integration)

Records Management: Provides links to install, access, and manage Records
Management capabilities

Chapter 2

[49]

Enabling the Records Management dashlet
Next, the Records Management dashlet needs to be added to the dashboard to enable
the option for installing Records Management. To do that, click on the Customize
Dashboard button towards the upper right.

On the screen to customize the dashlet, click on the Add Dashlets button. Then find
the Records Management Console dashlet and drag it to one of the columns of your
dashboard layout:

Getting Started with the Alfresco Records Management Module

[50]

After doing that, we will see the Records Management dashlet displayed on the
dashboard when we navigate back to the dashboard page. It will look something
like this:

Adding the Records Management site
Within Share, we still need to install the Records Management site from which we
can access the Records Management functionality. In version 3.x of Alfresco, only
a single Records Management site is allowed. To install the site, click on the Create
Records Management Site link on the dashlet.

You will see the message: Creating Records Management Site. Please Wait. After
that, the Records Management site is installed and is available. The contents of the
Records Management dashlet have been refreshed, and the dashlet will now appear
as follows:

The Creating Records Management Site link that was displayed initially has been
hidden and that link has been replaced with two new links: Records Management
Site and Load Test Data. Details of the behind-the-scene mechanics of how this
dashlet works when you click on the Create Records Management Site link are
discussed at the end of this chapter.

Chapter 2

[51]

If we refresh the dashboard page in the browser, we will also see that the My Sites
dashlet on the dashboard updates to show that the Records Management site now
exists and, by default, user admin is a member of it because that user created the site.

Designating the Records Management
administrator
The Records Management site in Share now exists, but you will soon find that it isn't
too useful just yet. At this point, no users, including the admin user, have sufficient
privileges to create any data in the site.

In a later chapter, we will create Records Management users and assign privileges to
them for the Records Management site. For now, we will work with just the admin
user and designate user admin to also have administrator rights to the Records
Management site. With those privileges, the admin user will be able to create
elements of the File Plan, the hierarchical folder-like structure used for classifying
and filing records, and have capabilities related to the configuration of the Records
Management site.

Before going into the Share administration area, we need to work around one quirk
of the Records Management installation. No Records Management groups have yet
been created. The Records Manager groups and the assigned privileges for each
group will happen automatically the first time someone tries to navigate to the
Records Management site.

So, even though we don't have privileges to do anything in the Records Management
site just yet, we bring up the Records Management site. We do that by clicking on
the Records Management Site link on the dashlet. The Records Management groups
will now be created.

Getting Started with the Alfresco Records Management Module

[52]

To make a user admin a Records Management administrator, we next navigate to the
Share administration area by clicking on the Admin Console link along the top of
the Share dashboard. Click on the Groups Tool along the left navigation pane, and
then click on the Browse button in the middle pane on the right:

We can then see a list of all the available groups in Alfresco Share. Click on the
Records Management Administrator. We need to add the user admin to this group.
To do that, in the listbox to the right of the group list, click on the upper-right-most
icon of a person, search for admin, and finally add that user to the group.

After completing this step, the Records Management module is installed and the
Records Management site has been created and is available. However, at this point,
the user admin is the only active user for the site.

How does it work?
Let's dig in a bit deeper to get a better understanding of how Records Management
has been integrated into Alfresco Share. To do that, let's look in more detail at how
the Records Management dashlet is built.

Chapter 2

[53]

The Records Management AMP Files
The Alfresco Records Management application is deployed using two AMP files.
An AMP file, or an Alfresco Module Package, is a bundled collection of files that
together extend the Alfresco platform to provide a new set of related functionality.

Alfresco Records Management functionality is split across two AMP files. One of
the AMP files is applied to the Alfresco WAR, extending basic Repository services,
and the other AMP file is applied to the Share WAR, defining the Share Records
Management site.

AMP files are ZIP files that are packaged and arranged in a folder structure that
mirrors the directory structure of the WAR files that they are being deployed into.
While we may be adding only Records Management, a single new Alfresco module,
the files that make up the Records Management functionality are stored across many
standard Alfresco Repository and Alfresco Share directories.

From a systems perspective, when trying to analyze Records Management internals
or when trying to modify and customize Records Management behavior, Records
Management files are spread across many directories and mixed with the files
already in those directories. Because Records Management files are mixed together
with non-Records Management files, once the Records Management module is
installed, it can be hard when looking at the files in a directory to identify which files
in that directory are specific to Records Management.

As a tip, it can be useful when troubleshooting functionality specific to Records
Management to isolate only those files related to Records Management. That's easy
to do. We can just unzip the AMP files into a directory outside the normal Alfresco
structure and then use the files in this location when searching code. The directory
structure of the unzipped AMP files mirrors the directory structure of the files that
are active in the Share application. Searching across only the Records Management
files, while not always foolproof, can make for a more efficient way of searching
Alfresco source code, limiting ourselves to looking at only those files that are specific
to the Records Management implementation.

Getting Started with the Alfresco Records Management Module

[54]

The next screenshot shows the unzipped AMP folder hierarchy. We can see that
there are many different directories where files for the Share Records Management
AMP file are stored:

Chapter 2

[55]

The Records Management Console dashlet
The Alfresco Records Management dashlet provides the starting point for installing
the Records Management site and also provides an easily accessible link to an
administration page that is specific to configuring and managing the Records
Management site. The Records Management dashlet itself is an excellent example
of how dashlets within Alfresco Share work.

Let's look briefly at the Records Management Dashlet to gain some insight into how
dashlets work within Alfresco and also to understand how we can customize the
Records Management dashlet to work differently.

The flow of Alfresco webscripts
In order to understand how Alfresco dashlets work, let's take a step back and look
at the general flow of information in Alfresco webscripts. The flow that we'll now
discuss is at the core of understanding how Alfresco Share dashlets, pages, and
components work.

In the next diagram, we can see the flow of information in the Alfresco Webscript
Framework. The Webscript Framework is basically Spring Surf, an Open Source
framework for building web pages. The framework was first used to build the
Alfresco Share application. Later, in cooperation with SpringSource, Alfresco
donated the web framework technology to the Spring open source community using
an Apache license.

Webscripts consist of files written using the scripting language, JavaScript, the
templating language, FreeMarker, and XML to define and describe how the
webscript will operate. Webscripts provide a lightweight framework for building
complex interfaces and applications.

The announcement of the formation of the open source Spring Surf
project was jointly announced by Alfresco and SpringSource in
December, 2009. The Spring Surf website is available at this URL:
http://springsurf.org.

Spring Surf uses a design pattern found frequently in software architecture called
Model-View-Controller (MVC). Alfresco webscripts follow the MVC design pattern.
In the MVC pattern, a model or data package is built by a software element called
the controller. The model data is then applied to a view template that can render the
model data for display.

Getting Started with the Alfresco Records Management Module

[56]

The advantage of MVC is that it cleanly allows business logic to be separated from
the presentation or view logic. The MVC principle encourages developers to write
code that is more reusable and modular.

Let's walk through the steps, as shown in the next diagram, to see the flow
through the web framework from the initial HTTP request to the response.
The steps are as follows:

1. An HTTP/HTTPS request is made by invoking a URI. The URI is associated
with an application that processes the parameters of the URI and then
handles where the request is to be sent next.

2. The request is dispatched to the Controller element in the Webscript
Container, which matches the parameters of the request. This hand off to the
Controller starts the MVC process. For some simple, basically static pages
or components, it isn't necessary to have a controller element or model; in
those cases, control is passed directly to the view in step 5. The Controller
logic is typically written using JavaScript, but for more complex tasks, it is
also possible to write the Controller as a Java bean that can get wired into the
MVC framework.

3. The controller is tasked with building the model, which returns a set of
named properties that are used by the view during rendering. To build
the model, the controller will often need to call out to services to retrieve
the data and sometimes also process or transform the data before entering
it into the model.

4. The dispatcher next finds the view template that contains the markup
instructions for how to render the information contained in the model.
The controller then passes off the model data to the view.

5. The view consists of FreeMarker tags that specify the layout and instructions
for rendering the information. Based on the requested format, the view
constructs the formatted view. Typically, the view will format the
information in HTML, JSON, or RSS, but almost any format is possible.

6. The formatted view information is finally returned in the response to the
HTTP request.

Chapter 2

[57]

The flow of the Records Management webscript
dashlet
Let's see now how the flow of the Records Management dashlet follows the Web
Framework MVC pattern that we just discussed.

The Records Management dashlet files
To do that, let's first identify the files that make up the website dashlet. These files
were bundled into the Site-webscripts directory of the Alfresco Share Records
Management AMP. By navigating to the tomcat\webapps\share\WEB-INF\
classes\alfresco\site-webscripts\org\alfresco\components\dashlets
directory, we'll find the files specific to the Records Management dashlet.

Getting Started with the Alfresco Records Management Module

[58]

The following table lists the Records Management dashlet files with a brief
description of their purpose:

Filename Description
rma.get.desc.xml The descriptor file for the dashlet. This file defines the

name, description, and URL for the dashlet.
rma.get.js This file contains the definition of a function for checking

to see if the Records Management site has already been
created or not. The script also executes the function,
returning true or false.

rma.get.head.ftl This file defines markup to include the client JavaScript file
rma-dashlet.js on the page displaying the dashlet.

rma.get.html.ftl This file provides the FreeMarker tags that define the layout
and appearance of the dashlet.

rma.get.properties This file defines the text shown on labels of the dashlet
UI and also contains the text for messages that may be
displayed. The text in this file is English, but localized
versions of this file can be created for displaying text in
different languages corresponding to different locales.

In addition to these files, the client-side JavaScript file referenced in rma.get.head.
ftl is also involved in rendering the Records Management dashlet. This file is in the
directory tomcat\webapps\share\components\dashlets:

Filename Description
rma-dashlet.js This client-side JavaScript file defines actions associated with

clicking on some of the links displayed on the dashlet.

The Records Management dashlet files in the MVC Pattern
These files are used to construct the Records Management dashlet using the Web
Framework MVC pattern as follows:

1. The dashboard has a reference to the URI for the Records Management
dashlet. When it is called, it will look something like: http://
localhost:8080/share/page/components/dashlets/rma?htmlid=rmid.

2. The Web Framework runtime then processes the URL and tries to determine
if a controller exists to initiate MVC processing for the dashlet. To do that, the
framework identifies the file rma.get.desc.xml as the descriptor file for the
dashlet.

Chapter 2

[59]

3. rma.get.js is the controller file for the dashlet. Its name matches the file
name signature of the descriptor file. This file is run and determines if the
Records Management site is already installed into Alfresco Share. To do that,
it calls into the Alfresco repository and queries for the existence of the site.

4. The model is then constructed by adding a single parameter into it called
sitefound. If the Records Management site exists, the parameter is true,
otherwise it is false.

5. The model data then gets dispatched to the view. The view is constructed
with the files rma.get.head.ftl, rma.get.html.ftl, and rma.get.
properties. The view generates the appropriate HTML for the display of
the dashlet on the dashboard. rma.get.head.ftl adds an <include> tag
into the <head> tag of the dashboard page for the client-side JavaScript file
rma-dashlet.js.

6. The HTML data is returned in the response.

If we markup the previous diagram of the Web Framework MVC process with
the names of the files that are involved, we can see something that looks like
the following:

Getting Started with the Alfresco Records Management Module

[60]

The Records Management descriptor file
When a user logs into Share, the dashboard page will collect the page layout and
display all dashlets for the user. Each dashlet is referenced and displayed based
on the URI defined in the descriptor file for the dashlet.

The descriptor file for the Records Management dashlet is the file rma.get.desc.
xml. The contents of that file are as follows:

<webscript>
 <shortname>Records Management Config</shortname>
 <description>Records Management site configuration and helper
 component</description>
 <family>user-dashlet</family>
 <url>/components/dashlets/rma</url>
</webscript>

The descriptor for the dashlet webscript defines a shortname and a description.
Webscripts are assigned a family, which is similar to a tag, and is used to group
together webscripts of a similar type when browsing or searching for webscripts.
The last parameter in this file defines a URL value for referencing the dashlet. The
dashlet URL would expand to something like http://localhost:8080/share/
page/components/dashlets/rma?htmlid=rmid.

The Records Management dashlet controller
When the Records Management dashlet is first invoked for display on the dashboard,
the controller file is run. The controller populates the values for the properties of the
model. If we examine the code in the controller file, we see a very simple model with
only the property foundsite. foundsite is a Boolean flag that specifies whether or
not the Records Management site has already been created.

The value for foundsite is determined by connecting with the Alfresco Content
Repository and checking to see if a site called rm, the Records Management site, exists.

function main()
{
 // Check for RMA site existence
 var conn = remote.connect("alfresco");
 var res = conn.get("/api/sites/rm");
 if (res.status == 404)
 {
 // site does not exist yet
 model.foundsite = false;
 }
 else if (res.status == 200)

Chapter 2

[61]

 {
 // site already exists
 model.foundsite = true;
 }
}

main();

The Records Management dashlet view
The model generated by the Controller is then passed to the view.

If we open the file rma.get.html.ftl, we can see the markup that specifies the
layout for the dashlet UI. A lot of the file uses standard HTML tags, and FreeMarker
tags are used to identify message labels and to hide or display links on the dashlet.
The message labels that are referenced are defined in the properties file. Putting
text into a properties file is considered a best practice that is used frequently in Java
programming and which easily enables localization of text.

<script type="text/javascript">
 //<![CDATA[
 new
 Alfresco.dashlet.RMA("${args.htmlid}").setMessages(${messages});
//]]>
</script>
<div class="dashlet">
 <div class="title">${msg("label.title")}</div>
 <div class="body theme-color-1">
 <div class="detail-list-item-alt theme-bg-color-2 theme-color-2"
 style="padding: 0.5em;border-bottom: 1px solid #DDD6A0">
 <h4>${msg("label.summary")}</h4>
 </div>
 <div id="${args.htmlid}-display-site" class="detail-list-item"
 <#if !foundsite="">style="display:none"</#if>>

 ${msg("label.display-site")}
 </div>
 <div id="${args.htmlid}-create-site" class="detail-list-item"
 <#if foundsite="">style="display:none"</#if>>
 <a id="${args.htmlid}-create-site-link"
 href="#">${msg("label.create-site")}
 </div>
 <#if user.isAdmin="">
 <div id="${args.htmlid}-load-data" class="detail-list-item"
 <#if !foundsite="">style="display:none"</#if>>

Getting Started with the Alfresco Records Management Module

[62]

 <a id="${args.htmlid}-load-data-link"
 href="#">${msg("label.load-test-data")}
 </div>
 </#if>
 <div class="detail-list-item last-item">
 <a id="${args.htmlid}-role-report-link"
 href="${url.context}/page/console/rm-console/">
 ${msg("label.rm-console")}
 </div>
 </div>
</div>

By looking up the string values in the rma.get.properties file, we can see the basic
content that will be displayed in the dashlet.

Property file label Text string value
label.title Records Management
label.summary Configuration and setup for the Records Management site
label.display-site Create the Records Management site
label.create-site The Records Management site
label.load-test-data Load test data
label.rm-console The Management console

The header file is also a great place to reference any custom stylesheets. But the
Records Management dashlet is fairly simple. It conforms to the standard look
of the Alfresco dashboard and does not use a custom stylesheet.

The Records Management dashlet URL
The dashlet lives in the context of the dashboard page, but it is interesting to see
the URL for the dashlet render outside the context of the dashboard. If we do that,
we can see something like the following screenshot. We can then look at the source
code for the rendered page and can see that the HTML created for the dashlet
lacks <head> and <body> tags and also doesn't contain a reference to the Records
Management dashlet client-side JavaScript file. The dashlet also relies on the
standard stylesheet for the dashboard page, so the rendering of it here is different
than it would be on the dashboard page:

Chapter 2

[63]

If we look at the source code of this page after being rendered in the browser, we
can see how the messages are evaluated and used. The messages are passed in as an
argument to the creation method for the client-side RMA dashlet object. All the dashlet
labels and display strings have been evaluated too, like the title and link text:

<script type="text/javascript">//<![CDATA[
 new Alfresco.dashlet.RMA("rm").setMessages({"label.summary":
 "Configuration and Setup for Records Management site.",
 "label.load-test-data": "Load Test Data", "message.creating":
 "Creating Records Management Site please wait...", "label.rm-
 console": "Management Console", "message.create-fail": "Failed to
 create Records Management Site.", "message.importing": "Importing
 Records Management test data please wait...", "label.create-
 site": "Create Records Management Site", "label.user-role-
 report": "User Role Report", "message.import-fail": "Failed to
 import test data into Records Management Site.", "message.create-
 ok": "Records Management Site successfully created.",
 "label.display-site": "Records Management Site", "message.import-
 ok": "Records Management Site import successful.", "label.title":
 "Records Management"});
//]]></script>
<div class="dashlet">
 <div class="title">Records Management</div>
 <div class="body theme-color-1">
 <div class="detail-list-item-alt theme-bg-color-2 theme-color-
 2"
 style="padding: 0.5em;border-bottom: 1px solid #DDD6A0">
 <h4>Configuration and Setup for Records Management site.</h4>
 </div>
 <div id="rm-display-site" class="detail-list-item" >
 Records Management
 Site
 </div>

Getting Started with the Alfresco Records Management Module

[64]

 <div id="rm-create-site" class="detail-list-item"
 style="display:none">
 Create Records
 Management Site
 </div>
 <div id="rm-load-data" class="detail-list-item" >
 Load Test Data
 </div>
 <div class="detail-list-item last-item">
 <a id="rm-role-report-link"
 href="/share/page/console/rm-console/">Management
 Console
 </div>
 </div>
</div>

The Records Management console client-side JavaScript
In the HTML for the dashlet that we just looked at, some of the <a> tags referenced
"#" as the target href link value. The "#" refers to the current HTML page. In these
cases, the dashlets, instead of linking to a new URL from an href target value, are
activated by click events, which call JavaScript methods.

For example, consider the following line from the evaluated HTML:

Create Records Management Site</
a>

What is important here is the id for the <a> tag.

Recall that the dashlet file, rma.get.head.ftl, includes markup in the <head> tag
for the dashboard HTML page to include the client-side JavaScript file rma-dashlet.
js. If we look at the contents of that JavaScript file, we'll find the constructor for an
RMA object:

 Alfresco.dashlet.RMA = function RMA_constructor(htmlId)
 {
 return Alfresco.dashlet.RMA.superclass.constructor.call(this,
 "Alfresco.dashlet.RMA", htmlId);
 };

The constructor method is called from the script at the top of the file rma.get.html.
ftl that we discussed above. The object Alfresco.dashlet.RMA that is created by
the constructor extends from the Alfresco.component.base object. The RMA object
is constructed using elements of the Yahoo! User Interface library or YUI.

Chapter 2

[65]

Much of the Share JavaScript client code is written to use the YUI 2.0 library. YUI
provides a set of utilities and controls for more easily creating rich browser-based
applications. It uses techniques based on DOM scripting, DHTML, and AJAX. YUI
uses the BSD license and is free to use. It is important to understand the basics of YUI
in order to fully understand how many of the Alfresco Share JavaScript files work.

More details of the Yahoo! User Interface library can be found here:
http://developer.yahoo.com/yui/2/.

The skeleton of the object methods for the Alfresco dashlet.RMA object is
as follows:

 YAHOO.extend(Alfresco.dashlet.RMA, Alfresco.component.Base,
 {
 /**
 * Fired by YUI when parent element is available for scripting
 * @method onReady
 */
 onReady: function RMA_onReady()
 {
 ...
 },
 /**
 * Create Site link click event handler
 *
 * @method onCreateSite
 * @param e {object} DomEvent
 * @param args {array} Event parameters (depends on event type)
 */
 onCreateSite: function RMA_onCreateSite(e, args)
 {
 ...
 },
 /**
 * Load Test Data link click event handler
 *
 * @method onLoadTestData
 * @param e {object} DomEvent
 * @param args {array} Event parameters (depends on event type)
 */
 onLoadTestData: function RMA_onLoadTestData(e, args)
 {
 ...

Getting Started with the Alfresco Records Management Module

[66]

 },
 /**
 * User Role Report link click event handler
 *
 * @method onUserRoleReport
 * @param e {object} DomEvent
 * @param args {array} Event parameters (depends on event type)
 */
 onUserRoleReport: function RMA_onUserRoleReport(e, args)
 {
 ...
 }
 }

The RMA_onReady method defines the element IDs in the HTML that can trigger
actions. In the dashlet HTML, we saw the element IDs for the <a> tags above: rm-
create-site-link, rm-load-data-link, and rm-report-link. The element
ID names were constructed by taking an HTML ID value that is passed in and
appending a string to it. In our test, we used "rm" for the HTML ID. In general,
the base HTML ID is a fairly long text string of various concatenated pieces of
information that may look something like this: page_x002e_component-1-3_x002e_
user_x007e_admin_x007e_dashboard-create-site:

 onReady: function RMA_onReady()
 {
 var me = this;

 this.widgets.feedbackMessage = null;

 // setup link events
 Event.on(this.id + "-create-site-link", "click",
 this.onCreateSite, null, this);
 Event.on(this.id + "-load-data-link", "click",
 this.onLoadTestData, null, this);
 Event.on(this.id + "-role-report-link", "click",
 this.onUserRoleReport, null, this);
 }

We saw earlier in this chapter that one of the last steps in installing and creating the
Records Management site is to click on the link Create Records Management Site.
The event caused by clicking on the link caused the onCreateSite method action to
be called:

 onCreateSite: function RMA_onCreateSite(e, args)
 {
 Event.stopEvent(e);

 if (this.widgets.feedbackMessage === null)

Chapter 2

[67]

 {
 this.widgets.feedbackMessage =
 Alfresco.util.PopupManager.displayMessage(
 {
 text: this.msg("message.creating"),
 spanClass: "wait",
 displayTime: 0
 });

 // call web-tier to perform site creation
 Alfresco.util.Ajax.request(
 {
 method: Alfresco.util.Ajax.GET,
 url: Alfresco.constants.URL_SERVICECONTEXT +
 "utils/create-rmsite?shortname=rm",
 successCallback:
 {
 fn: function()
 {
 this.widgets.feedbackMessage.destroy();
 Alfresco.util.PopupManager.displayMessage(
 {
 text: this.msg("message.create-ok")
 });

 // refresh UI appropriately
 Dom.setStyle(this.id + "-create-site",
 "display", "none");
 Dom.setStyle(this.id + "-display-site",
 "display", "block");
 Dom.setStyle(this.id + "-load-data", "display",
 "block");
 Alfresco.util.Anim.pulse(this.id + "-display-
 site");

 // reset feedback message - to allow another action if
 required
 this.widgets.feedbackMessage = null;
 },
 scope: this
 },
 failureCallback:
 {
 fn: function()
 {

Getting Started with the Alfresco Records Management Module

[68]

 this.widgets.feedbackMessage.destroy();
 Alfresco.util.PopupManager.displayMessage(
 {
 text: this.msg("message.create-fail")
 });

 // reset feedback message - to allow another action if
 required
 this.widgets.feedbackMessage = null;
 },
 scope: this
 }
 });
 }
 }

The onCreateSite method first displays a message indicating that the Records
Management site is being created. Next an AJAX call is made to create the Records
Management site for Share on the server. If the site is created successfully, a pop-up
message displays a success message, and the visibility of the links on the dashlet are
adjusted, hiding the Create Records Management Site link, and now showing as
available links for loading test data and for navigating to the newly created Records
Management site. If the site fails to be created, a failure message will be displayed.

Creation of the Records Management site
We just saw how the onCreateSite method for the Alfresco dashlet.RMA
object made an AJAX call to the server to create the Records Management site. The
Share webscript that is referenced in the AJAX call is Alfresco.constants.URL_
SERVICECONTEXT + "utils/create-rmsite?shortname=rm

This will evaluate to a URL that looks something like http://localhost:8080/
share/service/utils/create-rmsite?shortname=rm. We can find that this URL
is defined by the Records Management webscript create-rmsite that was installed
into Share.

This AJAX call provides another example of the use of webscripting within Alfresco
Share. The files for the create-rmsite webscript can be found in the directory
tomcat\webapps\share\WEB-INF\classes\alfresco\site-webscripts\org\
alfresco\utils. The files that define this webscript are as follows:

Chapter 2

[69]

Filename Description
create-rmsite.get.
desc.xml

The descriptor file for the webscript. It includes text
strings for the shortname and description. It also defines
the URL reference to the webscript.

create-rmsite.get.
html.ftl

This file contains the FreeMarker markup that is used to
construct the HTML response to a call to the webscript.

create-rmsite.get.
properties

This properties file contains the text strings used that are
displayed in the response page for the webscript.

create-rmsite.get.js This JavaScript file acts as the controller for the response
to a call to the webscript.

Let's now look at the internals of the create-rmsite webscript to see how it
builds the Records Management site. Here we can see the contents of the file
create-rmsite.get.desc.xml:

<webscript>
 <shortname>Create RM Site</shortname>
 <description>
 Will create a new RM site in the repo and create the RM preset in
 the web-tier.
 </description>
 <url>/utils/create-rmsite?shortname={shortname}</url>
</webscript>

The shortname and description values are self-explanatory. The URL value is
a location that the web framework dispatcher will check when it tries to match
incoming URLs to be evaluated. In this case, we see that it is necessary to include the
shortname parameter on the URL (which is different from the shortname used in the
webscript XML). We saw that the site will be called with the shortname "rm" from
the onCreateSite method discussed above.

Next, let's look at the controller JavaScript file for this webscript. The contents of the
file create-rmsite.get.js are as follows:

function main()
{
 // Call the repo to create the site
 var siteJson =
 {
 shortName: args["shortname"],
 sitePreset: "rm-site-dashboard",
 title: msg.get("title.rmsite"),
 description: msg.get("description.rmsite")
 };

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Getting Started with the Alfresco Records Management Module

[70]

 var scriptRemoteConnector = remote.connect("alfresco"),
 repoResponse = scriptRemoteConnector.post("/api/sites",
 jsonUtils.toJSONString(siteJson), "application/json");
 if (repoResponse.status == 401)
 {
 status.setCode(repoResponse.status, "error.loggedOut");
 return;
 }
 else
 {
 var repoJSON = eval('(' + repoResponse + ')');

 // Check if we got a positive result
 if (repoJSON.shortName)
 {
 // Yes we did, now create the site in the webtier
 var tokens = new Array();
 tokens["siteid"] = repoJSON.shortName;
 sitedata.newPreset("rm-site-dashboard", tokens);

 model.success = true;
 }
 else if (repoJSON.status.code)
 {
 status.setCode(repoJSON.status.code, repoJSON.message);
 return;
 }
 }
}

main();

Here the Controller posts back to the Alfresco Repository API to create the Records
Management site, passing into the API method an object with parameters that define
the new site. Some of the parameter values come from the string message data found
in the properties file create-rmsite.get.properties:

title.rmsite=Records Management
description.rmsite=DoD 5015.02-STD Electronic Recordkeeping

If the site structure is successfully created in the repository, the Share root object
sitedata is updated to now know about the new Records Management site
available within Share. The controller populates the Boolean parameter success in
the model and returns it for use in the view.

Chapter 2

[71]

A complete description of sitedata and other root-scoped objects that
are available with the Spring Surf web framework in Share can be found
on the Alfresco wiki: http://wiki.alfresco.com/wiki/Surf_
Platform_-_Freemarker_Template_and_JavaScript_API

Finally, the View component of the MVC process is invoked and has available to it
the model from the Controller. The contents of the View file create-rmsite.get.
html.ftl is as follows:

<#if success>
 Successfully created RM site '
 ${args["shortname"]}'.
</#if>
<#if code?exists>
Error code: ${code}</#if>
<#if error?exists>
Error: ${error}</#if>

Here, if the model returned success, the HTML markup returned will report success
with a link to the dashboard page of the Records Management site. If an error
occurred, an error code is reported.

In this "How does it work?" section and in similar sections in subsequent
chapters, we try to get a look at how both Alfresco Share and the Records
Management module work. As a user of the system, this information
isn't mandatory to know, but the knowledge of system internals can be
useful in troubleshooting, and also for understanding how and where
customizations in the system are possible.
Alfresco provides a truly open system. All of the source code is readily
available, and Alfresco promotes itself as a core around which content-
based applications can be built.
The use of dashlets and webscripts provide an ideal starting point
for users that want to customize Alfresco. The scripting and template
languages used by webscripts make rapid iterative development possible,
and dashlets typically only require a modest amount of code to write.

Getting Started with the Alfresco Records Management Module

[72]

Web development within Share
That concludes our introduction to the internals of the Spring Surf web framework
within the Alfresco Share application. In future chapters, we'll continue our
discussion on 'How does it work?' and our understanding of the Alfresco MVC
process will be applied to other components of the Records Management module.
As we've seen, the architecture for Share is quite clean and that promotes rapid
development.

Summary
In this chapter, we learned how to install Alfresco Records Management software.
We covered the following topics:

•	 How to install the base Alfresco software and the Records Management
modules

•	 How to add the Records Management console dashlet to the dashboard
•	 How to create the Records Management site
•	 How to create a Records Manager administrator

At the end of the chapter, in a 'How does it work?' section, we looked in detail at
how the Records Management console dashlet in the Alfresco Share dashboard is
constructed. In particular, we covered:

•	 The MVC design pattern as used by the Spring Surf web framework
within Alfresco Share

•	 How Alfresco webscripts work
•	 How the Records Management dashlet works
•	 How the Records Management site is created internally

With Alfresco Records Management software now up and running, in the next
chapter, we will begin looking at how to effectively configure Alfresco software
to match our Records Management Program's requirements.

Introduction to the
Alfresco Share

Records Management Site
In the last chapter, we walked through the steps for installing and setting up a
standard instance of Alfresco software with the Records Management module and
then creating the Records Management Share site. In this chapter, we will spend
some time familiarizing ourselves with the Alfresco Share environment and with
some of the fundamentals of how to get started working within the Alfresco Records
Management site.

Alfresco Share was built using elements of the Spring Surf web framework and the
Alfresco Content Repository. While the Records Management site is no exception
and while it follows a design pattern similar to that used by other sites within
Share, there are also features of the Records Management site that make it distinctly
different from standard Share sites, and we will highlight some of those similarities
and differences here.

In this chapter, we will describe:

•	 How to customize the Share user and site dashboards
•	 The Records Management site dashboard
•	 Collaboration features available within Share and accessible from

the Share Records Management site
•	 The Records Management File Plan and Records search pages
•	 How to control which users and groups have access to the Records

Management site

Introduction to the Alfresco Share Records Management Site

[74]

We will also look at some of the internals of Alfresco Share and Records
Management. In particular, we will look at:

•	 Share and Records Management configuration files
•	 How user and site dashboards are constructed and how their configuration

data is persisted
•	 How to create a new Share theme

The Share environment
A good way to first start trying to understand how Records Management works
within Alfresco is by getting an understanding of the overall structure and
environment that it runs in, Alfresco Share. The Share Records Management site
is built in a way that extends and reuses many elements of standard Share site
functionality. Because of that, a good understanding of the basics of Alfresco Share
can also provide a good foundation for learning how Records Management works.

But while there are similarities between standard Share sites and the Share Records
Management site, there are also a number of differences. Compared to standard
Share sites, Records Management is quite unique, and we will discuss the differences
that exist between standard sites and the Records Management site.

A brief history of Alfresco Share
In early December 2007, Alfresco announced the broadening and repositioning
of Alfresco software to include Social computing and collaboration capabilities.
The announcement was a turning point for Alfresco product development.
While Alfresco was only a couple of years old at the time, prior to that, product
development had focused primarily on building the Alfresco content repository and
the library services that are requisite for an enterprise content management system.

Alfresco Share as a social platform
After that announcement, Alfresco blog articles and press releases started referring to
the Alfresco platform as the "Open source social computing platform for enterprise".
While that name is a bit of a mouthful, the thinking behind it did strike a chord in a
world that at the time was seeing phenomenal growth in the acceptance and use of
Social Media.

Chapter 3

[75]

The new positioning of Alfresco brought along with it new descriptions of the
software that included phrases like "Enterprise 2.0 software" and "Web 2.0 user
interface". To make good on this new positioning, Alfresco aggressively introduced
integrations with Social Networking sites like Facebook and with wiki products like
MediaWiki and WordPress.

Alfresco Share and the Alfresco 3 Labs release
The move towards including collaboration capabilities in Alfresco software preceded
the actual introduction of Alfresco Share. It wasn't until nearly seven months
later, near the end of July 2008, that Alfresco Share was announced. Share initially
appeared in what was called the "Alfresco 3 Labs version" and was ultimately
released in the enterprise version of Alfresco in October 2008.

The Alfresco 3.0 release was very feature rich and included the introduction of the
Surf development platform, the Alfresco Share application, and an implementation
of Microsoft's SharePoint protocol. The SharePoint protocol implementation allowed
the Alfresco repository to be accessed in the same way as a SharePoint repository by
Microsoft Office applications.

Almost from the very beginning of Alfresco as a company, Alfresco team members
identified EMC Documentum and Microsoft as their principle competitors in the
Enterprise Content Management (ECM) market. The 3.0 release really focused
on the identification of that competition. It became very clear that Alfresco was
positioning itself with Microsoft SharePoint as its principle competitor.

Alfresco founder and CTO John Newton introduced Share as the "first open source
alternative to Microsoft SharePoint", and noted that Alfresco's goal was to achieve
interoperability and compatibility with Microsoft SharePoint. Undoubtedly, the
product name "Share" was also selected to further emphasize the similarity of
Alfresco with SharePoint. SharePoint was clearly in Alfresco's crosshairs.

Alfresco Share 3.X Post-Labs release
With each point release of the Alfresco 3.x series of releases, Alfresco Share has
continued to evolve and to add features for better usability, expanded tools for
administration, and improved capabilities for promoting collaboration.

In the Alfresco Share 3.x release, Web 2.0 tools and services became available that
included a calendar, blogs, discussions, RSS feeds, and wikis. Alfresco added
lightweight scripting APIs to enable Rich Internet Application (RIA) mash up
applications with technologies like Adobe Flex and Alfresco's own Spring Surf
framework. Additional integrations with applications and services like Drupal
and iGoogle were also released.

Introduction to the Alfresco Share Records Management Site

[76]

New features added in the Alfresco 3.3 release of Share include:

•	 Document management—complete access to all core document management
capabilities.

•	 Permission management—ability to assign permissions to folders and
content within Share.

•	 Rules and Actions—access to the Alfresco Rules Engine developed for use
with the Explorer client has been moved to Share. Rules that trigger on
certain events can be created and configured via a rules wizard.

•	 Data lists—users can create multi-column lists to hold data like task or item
lists and associate the lists with a Share site.

•	 Google-like search—support for Boolean operators, range searches, and
search over metadata fields was added.

Use cases for Alfresco Share
Alfresco Share was designed to enable site-centric sharing of information. Sites
within Share were designed to be the focal point for managing information and
content related to a specific project or topic.

Team project sites
By far, the most common usage scenario for Alfresco share is for a site to be set up
within Share that can serve as a portal for team members to share information and
documents associated with a project. The site Document Library can identify those
documents relevant to the project and the most current versions of documents.
For many teams, the Document Library replaces the use of an unmanaged shared
drive. Events and milestones for the project site can be tracked on the calendar, and
members can share information in the discussion areas, blogs, and wiki pages.

Publishing sites
Publishing sites are very similar to team project sites, but publishing sites, instead
of being project-focused, focus on a specific topic. Publishing sites can be set up for
internal use by employees of an organization, usually on an intranet, or they can
be made available for access to users that are located both internal and external to
the organization. For example, the HR department might set up a site dedicated to
providing information about company benefits, or the training department might
make available training materials from the site, or a hardware maker might, for
example, create a portal that included product information, community support via
discussions, manuals, and downloadable software drivers.

Chapter 3

[77]

Personal sites
While the idea may run counter to the idea of shared collaboration, Share sites can
also be set up for the personal use of individual users. With a personal Share site,
users can create their own personal dashboard, set up their personal calendar and
tasks, and manage their personal documents. Parts of a personal site could be made
public, if desired. For example, a user might publish a blog from their personal site
that is accessible to the rest of the organization.

Records Management exists as a special kind of site within Share. The
focus of the Records Management site is the Document Library, and to
support the requirements of the DoD 5015.2 specification for managing
records, the Document Library has been re-engineered to become the
Records Management File Plan. It functions in a way that is significantly
different from the standard Document Library.
The Records Management site is similar to the Project Team site because,
typically, the primary members for the site are Records Management
team members. But that isn't always true because often record keeping is
decentralized, and users from all parts of the organization might be given
some level of access and filing capabilities within the File Plan.

Alfresco Share and collaboration
Alfresco Share was conceived as an application that provides a central point for:

•	 Project-based collaboration
•	 Wikis
•	 Blogs
•	 Discussions
•	 Calendar
•	 Data lists
•	 Document Library

Share dashboards
The first screen that we see after logging into the Alfresco Share application,
whether we are the administrator or a user, is the user dashboard. Each user is able
to customize their home page dashboard by changing the overall layout and the
content that appears within it.

Introduction to the Alfresco Share Records Management Site

[78]

The dashboard page is like the page of a portal. It consists of small panels that can
be arranged in positions on a grid defined by the page layout template. Available
page layouts range from a single column to four columns. Each of the panels on
the page is called a dashlet and each dashlet usually corresponds to a small, fairly
self-contained webscript that is able to calculate and render itself within the region
of the dashlet. Dashlets are constrained to fill the width of the dashboard column
and can be constructed to have either a fixed or variable height.

Dashlets can be placed in any of the layout columns, and dashlets fill a dashboard
column, starting from the top in the order that they are assigned to it:

From the user dashboard, a Customize Dashboard button on the upper-right of
the screen leads to a page where each user can customize his/her own dashboard.
Alfresco then saves and thereafter uses that custom dashboard configuration:

Chapter 3

[79]

The Customize User Dashboard screen is divided in half vertically with the upper
half used for specifying the overall dashboard layout, and the bottom half used for
placing the dashlets in the screen layout.

Much of the user interface of Alfresco Share is built using the Yahoo! User Interface
(YUI) library that allows the creation of user interfaces with very rich client-side
interaction. This particular screen is a good example of the dynamic screens that can
be built with the YUI library.

More information about the YUI 2 library can be found at http://
developer.yahoo.com/yui/2/ and http://yuilibrary.com/
projects/yui2/.

Introduction to the Alfresco Share Records Management Site

[80]

Changing the dashboard layout
On the layout specification area on top, clicking on the Change Layout button will
expose additional layout graphics. Each graphic gives an indication of the number of
and the relative widths and placements of the columns in the layout. Standard page
layouts range from using a single column to four columns. There may be layouts
with the same number of columns, but which differ by the width of the columns. In
this way, the user can visually select the layout configuration for the dashboard.

Changing the placement of dashboard dashlets
On the bottom area of the customization screen, dashlets can be placed on the
column grid of the selected layout. Note that the screen mockup doesn't show the
relative heights of the individual dashlets, just the order in which the dashlets will
be displayed.

Clicking on the Add Dashlets button will expose all dashlets that are available
for display on the dashboard. Dashlets can be moved from one grid layout location
to another by clicking on the dashlet and then dragging and dropping it into its
new position.

Dashlets that have been placed and which you would like to remove from the
layout can be dragged to either the trash icon or to the list of available dashlets.

After modifying the layout or changing the dashlet positioning, the new
configuration can be saved by clicking on OK. After that, the newly configured
dashboard will display. Your configuration changes for the dashboard are stored
on the Alfresco server and will be recalled and used the next time that you access
the dashboard page.

If, instead, you click on Cancel, any changes you made on the dashboard
configuration page will be lost and the dashboard page will display with no
modifications.

Changing site dashboards
In Alfresco Share, there are two types of dashboards: the user dashboard which
displays as the top-level user home page, and site dashboards which display as
the home page for each site. In the section above, we've looked in detail at the user
dashboard.

The configuration for each type of dashboard is done identically to the way
described previously, although the dashlets that are available differ depending on
the dashboard type. But, in both cases, the mechanics of the configuration are done
the same way.

Chapter 3

[81]

Dashlets are built using webscripts. When a dashlet is defined, the
dashlet family is specified as part of the dashlet description. Possible
types of dashlet families are user-dashlet, site-dashlet, and
dashlet. Type dashlet means that it can be used as either a user or site
dashlet. The family setting determines which dashlets are available for a
dashboard type.

Site pages
While the user dashboard page and the site dashboard page are very similar, site
dashboards also include top navigation links to site pages. The user dashboard
has no such navigation links. Standard sites for example, include by default, page
links to the site wiki, the site blog, the document library, a calendar, a list of links,
discussions, and data lists:

Configuring site page navigation
The page links available on a site can be configured. From the site dashboard page,
on the upper right, select Customize Site from the More button menu. After doing
that, the following screen for customizing the site pages is displayed:

Introduction to the Alfresco Share Records Management Site

[82]

If there are additional pages that are not already included on the navigation bar,
they can be added by first clicking on Add Pages and then selecting the new page or
pages from a list of available ones. Pages can be deleted from the list by clicking on
the x located on the lower middle right of each page graphic.

For a standard site, all available pages are included as part of the initial site
configuration. In that case, because all pages have already been assigned to the site,
no additional pages are available when Add Pages is clicked on. That isn't true for
the Records Management site though.

For Records Management, two pages that are unique to the Records Management are
assigned to the site by default: the File Plan and the Records Search pages. However
none of the standard Share collaboration pages, like the calendar or blog, are installed.

The focus of the Records Management site was clearly to be on Records
Management. Other capabilities were disabled by default so as not to steal attention
from the Records Management features. But collaboration features can be useful
in support of the Records Management process. They are available for use in the
Records Management site; they just aren't exposed by default.

The screen for customizing the site pages for Records Management looks like the
following screenshot:

Chapter 3

[83]

Collaboration pages can be added to the Records Management site, although the
content associated with those pages will not be managed according to the Records
Management File Plan. This means that if the blog page is added to the Records
Management site, new blog entries will be associated with the Records Management
site, but those blog entries will not be associated with the File Plan, and accordingly,
will not be records and will not be associated with a disposition schedule.

Currently, there is much debate in the Records Management community
about how to treat, or if even to treat as records, collaboration data
created from applications like wikis, blogs, and discussions. Collaboration
data is often very transient and undergoes frequent updates. As of yet,
there is no clear consensus in the Records Management community as
to exactly how Records Management principles can be best applied to
manage collaboration data as records.

While collaboration data may not be managed as records within Alfresco, Alfresco
can still be configured to log audit information for any type of data stored in the
system, including collaboration data. Also, like all other data in the repository,
collaboration data is text indexed and fully searchable.

Blogs, wiki, and discussion information associated with the Records Management
site can be used to enhance the overall usability of Records Management. These
tools can be used to explain and comment on the Records Management process
and procedures.

Text written to collaboration pages like blogs, wikis, and discussions are
fully searchable via the standard Alfresco site search, but content from
these pages are not records and hence not included as part of the search
set when using the Records Management site Records Search.

Share themes
The standard color scheme for Share makes use of sky-blue and lavender colors. It's a
pleasant and fresh look for the application, but you may not like it, or you may have
a different color scheme that you'd like to brand the application with.

Share provides a method for "skinning" the look of the application, which allows
developers to make consistent broad changes to the look of the Share application.
Color, font, and layout parameters for Share are controlled by the Share theme.
Internally themes are defined via custom CSS files and images.

Introduction to the Alfresco Share Records Management Site

[84]

Five themes come as standard with Share. The standard themes available are called
Default, Green, Yellow, High Contrast, and Google Docs. It is also very easy to
create new themes too. Themes are assigned by an administrator and are applied to
all pages of the Share application. There can only be a single theme that applies to all
pages of the Share application.

Share themes can be changed and applied by using the Application tool within the
Share administration console. You can get to the Admin Console from a link on the
top of the Share page just to the left of the Search field.

Currently themes are the only optional configuration parameter in the Application
tool. We might expect to see other application parameters made available for
configuration within this tool too:

Share collaboration
As discussed above, Share offers a number of useful communication tools for
engaging team members in project collaboration, and as just pointed out, all of
these collaboration pages are also available for use in the Records Management site.

Collaboration tools
Out of the box, the following collaboration tools can be used with Share sites:

Wiki: A wiki is a tool for collaboratively creating web pages. Wikis are typically
a collection of web pages, with each wiki page being written in the format of an
entry, like that of a dictionary or encyclopedia, which is focused on providing a clear
explanation of a topic or term. Generally, any user with access to a wiki is able to
contribute to or collaborate on the content of any wiki page. A change log or history
of all page changes is kept for each page of the wiki. The page history identifies the
users that have made wiki page edits, when they made them, and what content was
changed or added to the wiki page.

Chapter 3

[85]

Blog: A blog is a web page that contains journal-like entries made by one person or
a group of people. Blogs entries are often themed around a particular topic. Entries
to the blog are posted in chronological order and are usually written in an editorial
first-person format. Blog entries often contain commentary and opinion, description
of events, and advice. Entries are often assigned tags or categorized so that entries
on a common topic can be grouped or more easily searched. Unlike a wiki where
any part of the content posted is available to be edited, blog entries, once written, are
usually never edited, but can be commented on in a discussion thread that follows
the original blog entry by readers of the blog posting.

Document Library: The document library is an area within each Share site where
documents and files can be uploaded and made available for search, viewing, and
download. The document library in Share has been enhanced significantly since the
original release of Share 3.0. It now exposes most Alfresco repository capabilities
in the Share user interface, like library services, preview, metadata editing, aspects,
rules, and workflow.

Calendar: The calendar provides a convenient location to aggregate event and
meeting notices that are relevant to members of the Share site. An integration
with Microsoft SharePoint also allows meeting requests created in Outlook to
automatically be sent to and registered on the site calendar.

Links: The links page provides a summary of URL links to web pages that are
relevant or of interest to members of the Share site. Links added to the list can be
titled and briefly described.

Discussions: The discussion page is a web page where users can start dialog threads
with other site members around questions or topics of interest to the group.

Data Lists: Data lists are spreadsheet-like lists maintained as a simple webpage.
A list consists of rows of data with each column containing a specific type of data
attribute. Example data lists include contacts, events, issues, and locations.

Project-based collaboration data
The focus of Alfresco Share is to create sites for projects to centralize the location
of all project data and project collaboration. The goal is to make a Share site the
go-to location for finding all information pertinent to a project. Without a tool like
Share, project communications typically take place via e-mails, and e-mails can
quickly become scattered or lost. On a Share site, users can find the most current
documentation and news about a project.

Introduction to the Alfresco Share Records Management Site

[86]

The Records Management site
The Records Management site can be accessed in a number of ways. The dashboard
from the Share home page provides the following three links to the Records
Management site:

•	 From the Sites drop-down menu on the upper-most Share navigation bar
•	 From the My Sites dashlet
•	 From the Records Management console dashlet

The site dashboard
As we have seen earlier, the Records Management site dashboard functions
identically to the user dashboard. Like the user dashboard, the dashboard layout
and the dashlet placement is totally configurable:

The File Plan
Clicking on the File Plan page link in the top navigation for the Records
Management site brings up the File Plan page. The File Plan is really at the heart of
Records Management. Let's look at this page in more detail to get an understanding
of how to administer the File Plan:

Chapter 3

[87]

The File Plan toolbar
The File Plan toolbar is displayed as a banner of icons and actions at the top of the
main column of the File Plan. There is much more to say about the records File Plan,
but for now, consider the File Plan as the folder hierarchy used for organizing folders
and records. Depending on the state of items in the File Plan window, some of the
icons may not apply and may not be selectable.

If a toolbar item is not selectable, the item will be dimmed on the toolbar. Availability
of items on the toolbar is also determined by the role of the user. If the user's role
does not include an action or capability, the corresponding icon on the toolbar button
will also be dimmed.

After installing Records Management, no users, not even the
administrative user who installed the site will have sufficient privileges to
perform any actions within the File Plan. When testing and exploring the
full capabilities of Alfresco Records Management, it is best to select a user
that is a member of the Records Management administrator group.

Introduction to the Alfresco Share Records Management Site

[88]

New Containers: Standard File Plan container elements, like Series, Categories, or
Folders can be created by clicking on the left-most icon action on the toolbar. For
example, clicking on this button will launch a dialog that initiates the creation of
a new container of the type indicated on the button label. Depending on the level
that you are positioned at within the File Plan, the New Container toolbar item will
be labeled one of New Series, New Category, or New Folder. The File Plan strictly
follows the DoD 5015.2 convention for determining which type of container can
be added to the current location in the File Plan. The DoD 5015.2 specifies a folder
hierarchy of three levels, and the naming of those three levels is predefined: Series,
Category, and Folder. The toolbar enforces this hierarchy and allows only the correct
type of container to be created at a given level within the File Plan structure.

File: Clicking on the File button will launch a dialog that lets the user select the files
to be uploaded to the current location in the File Plan. In the previous screenshot of
the toolbar, we see that the ability to File is dimmed because we are positioned in a
File Plan Series and records can only be filed under a folder, not directly into a Series.

Import: Clicking on the Import button will bring up a dialog that allows you to
navigate to and select an Alfresco Content Package (ACP) file which contains the
zipped structure and contents of an exported File Plan. After selecting the ACP file,
the data from the file will be imported alongside the contents of the current File Plan
data. An ACP file is a ZIP file with the files and folders in it stored in an expected
structure.

Export All: Clicking on this button will export all metadata, content, and folder
structure of the current Records Management File Plan into an ACP or ZIP file. The
ACP file created by doing an export can later be used to import the same data into an
Alfresco Records Management system using the previously described Import button.

Report: Clicking on the Report button will launch a pop up that displays a visual
layout of the Records Management File Plan. The root of the diagram will be the
folder within the File Plan that you were positioned at when the Report button was
clicked on. A report of this type looks something like the following screenshot:

Chapter 3

[89]

The size of the text and icons in the Report are visually pleasing, but the data
displayed is somewhat verbose and there is little that can be done to customize
the look of the report. For File Plans with large numbers of categories and records,
this sort of output is simply not practical. If the report is being run over a large
number of folders and records, it might be better to instead use the records search
functionality. However, in that case, the search results won't visually depict the File
Plan folder structure.

Introduction to the Alfresco Share Records Management Site

[90]

Selected Items: Clicking on the Selected Items button of the toolbar will display a
drop-down menu of actions that can be run against the selected set of containers or
records. This button is only active when some items of the current File Plan position
have been first selected:

Left navigation panel
The left panel of the File Plan page contains a variety of shortcuts for quickly finding
data within the File Plan. Uppermost in the panel is the Navigation tree. The tree
view allows you to quickly navigate through the File Plan tree containers visually
and see the relative placement of the containers:

Chapter 3

[91]

Below the Navigation tree on the left panel is a section called File Plan. There are
two links located there: Transfers and Holds. Clicking on these links will bring up
either a list of transfer or a list of hold groups.

At the bottom of the left panel is a list of all Saved Searches. Saved Searches are
created within the Records Search area. Each search link here is a collection of
search criteria that is remembered and applied via a single click, rather than having
to re-enter the search criteria.

Introduction to the Alfresco Share Records Management Site

[92]

Records search
As of the Alfresco 3.3.1 release, Alfresco Share doesn't yet have the equivalent of
the advanced search capabilities that are available in the Alfresco JSF Explorer web
client. Advanced search capabilities aren't expected to be part of Alfresco Share until
the 4.0 release:

Records Management requirements, such as those in the DoD 5015.2 specification,
are very demanding around being able to search for and identify records.
Because standard search capabilities within Share weren't sufficient to meet those
requirements, a special search tool called Records Search was created which was
tuned for searching over records components of the File Plan.

It is likely that elements of the Records Search page of the Records Management site
will be reused or reworked to be used as part of the planned future Alfresco Share
advanced search capability.

Records Search consists of a page with two tabs: one to specify search criteria, and
a second to show the search results. The query string is created using a syntax that
Alfresco describes as Google-like in the way that full-text content and metadata
search criteria are combined into a single query field.

Chapter 3

[93]

Site members
Alfresco Share users are able to become members of any of the Share sites that are
hosted by the single instance of Share running on the server. But before a user is able
to access a Share site, they must first become a member of the site, and to become a
member, the user must either be invited or, if the site is publicly available, they can
explicitly choose to join it.

Administration of site members
By default, within each Share site, there is a navigation link called Members that
is shown always as the right-most list of page links available for the site. From
Members, the site administrator can search for and view profile information about
site members, change the role assigned to them, or remove them from the site
member list:

The site administrator is also able to invite Share users or groups to become members
of the site. The process for doing this is initiated by clicking on the Invite People
button of the site Members page. On this screen, the site administrator is able to find
existing Share users or to enter information needed to contact people not yet users
of the Share instance. Both types of people can be selected and invited by sending a
system-generated e-mail.

From the invite screen, there are links to access a form for sending invitations to all
users of a Share group and also to check on the status of invitations that have been
previously sent.

Introduction to the Alfresco Share Records Management Site

[94]

If the Share site is public, then another route for a Share user to become a member of
a site is to go to the user Sites page, available from a link at the very top of the page,
and search for the name of the site that they wish to Join:

How does it work?
We've looked now at many of the default capabilities of Share. In the rest of this
chapter, we will examine various ways in which Share can be configured.

Share configuration files
Alfresco developers were influenced early on by the Spring framework in the
creation and architecture of the Alfresco software. The core Java code is based on
Spring, and much of the Spring philosophy of flexibility and easy configurability
was carried through to the creation of the Surf web framework and to other design
aspects of the Alfresco platform.

Chapter 3

[95]

Beginning with the 3.2 release of Alfresco, many repository configurations
within Alfresco can be made without shutting down the entire Alfresco
server. Alfresco was designed to work as a collection of independent
subsystems, although the ability to use subsystems is available only as
a feature of the Enterprise version of Alfresco. Alfresco subsystems can
be administered using a JMX client, like JConsole. JConsole is available
from the OpenJDK group. http://openjdk.java.net/tools/
svc/jconsole/. Information about JMX and Alfresco subsystem
configuration is available on the Alfresco wiki. http://wiki.
alfresco.com/wiki/JMX

Repository property files
Alfresco Share is heavily dependent on the Alfresco repository for persisting web
assets, files, and collaboration content stored within the document library. Much
of the communication made from Share to the Alfresco repository is done via web
service calls.

Because of Share's dependence on the repository, it's important to understand how
the repository can be configured and monitored. When the repository starts up, it
loads information specified in the repository system configuration files.

The system configuration files are loaded in the following order:

•	 tomcat/webapps/alfresco/WEB-INF/classes/alfresco/repository.
properties

•	 tomcat/webapps/alfresco/WEB-INF/classes/domain/hibernate-cfg.
properties

•	 All property files within the subfolders of tomcat/webapps/alfresco/WEB-
INF/classes/alfresco/subsystems

•	 tomcat/shared/classes/alfresco-global.properties

The properties files were designed so that out of the box configuration settings can
be overridden by the user with different values.

Since the file alfresco-global.properties is loaded last, the best practice is to
centralize configuration property changes in this one file. This is the practice that
Alfresco recommends, and by following this recommendation, configurations can be
much more easily identified when it's time to upgrade the system, and the risk that
configurations might get lost during upgrades is minimized.

Introduction to the Alfresco Share Records Management Site

[96]

If you use an Alfresco installation wizard, values of the file alfresco-
global.properties are modified as the wizard runs. During
installation, some of the properties set in the file relate to the location of
where Alfresco content will be stored, the location of the Lucene full-text
index information, database connection properties, paths to third-party
software, database driver connect information, and hibernate properties.

Customizing bean files
In addition to property files, Alfresco can be configured by making changes to
Spring-context bean files. All of these files have filenames that end with context.
xml. Alfresco uses bean files for configuring both the base Alfresco repository and
also the Share application.

Share bean configuration
The principle file for configuring Share is share-config.xml. This file is located in
the tomcat\webapps\share\WEB-INF\classes\alfresco directory. It is used for
configuration because it is referenced from the Spring-context bean file slingshot-
application-context.xml, which can be found in that same directory.

Internally, much of the Alfresco Share source code still refers to
slingshot, the product code name used for Share before the Share
product was actually named.

Overrides to the standard settings in share-config.xml should be put in a file
named share-config-custom.xml, which is placed in the tomcat\shared\classes\
alfresco\web-extension directory.

Client debug settings
Copy the following code from the file share-config.xml and place it into the file
share-config-custom.xml with the value for the tag <client-debug> set to true.
Doing this will put Share pages into debug mode as shown in the screenshot below:

<config replace="true">
 <flags>
 <!--
 Developer debugging setting to turn on DEBUG mode for client
 scripts in the browser
 -->
 <client-debug>true</client-debug>

Chapter 3

[97]

 <!--
 LOGGING can always be toggled at runtime when in DEBUG mode
 (Ctrl, Ctrl, Shift, Shift).
 This flag automatically activates logging on page load.
 -->
 <client-debug-autologging>false</client-debug-autologging>
 </flags>
</config>

After making this change and restarting the server, bring up the client browser
debugger and navigate to a page within Share. Then type the following four keys in
sequence to bring up the JavaScript debug browser window at runtime: Ctrl, Ctrl,
Shift, Shift. This won't work in Microsoft Internet Explorer. In that case, you can get
the debug window to launch by appending the parameter log=on to the end of the
page URL. For example, try using a URL of the following format:

http://localhost:8080/share/page/user/admin/dashboard?log=on

For client-side browser debugging, Firebug with Firefox, Google
Chrome, or Inspector with Safari are recommended browsers. The
Alfresco JavaScript debugger uses Tim Down's log4javascript library.
Detailed information and a tutorial can be found online at http://
log4javascript.org/docs/quickstart.html.

Introduction to the Alfresco Share Records Management Site

[98]

Some logging will occur automatically into the debug window. You can modify
existing JavaScript code or write new code that uses the client logging feature that
will write messages to this window. The syntax of the logger is based on the methods
available in the Java log4j logger. For example, the following methods are available
within JavaScript code:

Alfresco.logger.debug();
Alfresco.logger.info();
Alfresco.logger.warn();
Alfresco.logger.error();
Alfresco.logger.fatal();

Remember that if you do things like turn on debugging or increase the
amount of information being written to the log file, it can seriously affect
system performance. If you intend to use the system for production,
the settings should be reverted to their original values when you have
completed your experiments.

Available aspects list
The file share-config.xml also controls which aspects are available on the user
interface to be applied to content objects. To override the standard list of aspects, the
following code should be copied from share-config.xml, modified as appropriate,
and then pasted into the file share-config-custom.xml:

<aspects>
 <!-- Aspects that a user can see -->
 <visible>
 <aspect name="cm:generalclassifiable" />
 <aspect name="cm:complianceable" />
 <aspect name="cm:dublincore" />
 <aspect name="cm:effectivity" />
 <aspect name="cm:summarizable" />
 <aspect name="cm:versionable" />
 <aspect name="cm:templatable" />
 <aspect name="cm:emailed" />
 <aspect name="emailserver:aliasable" />
 <aspect name="cm:taggable" />
 <aspect name="app:inlineeditable" />
 </visible>

 <!-- Aspects that a user can add. Same as "visible" if left empty
 -->
 <addable>

Chapter 3

[99]

 </addable>

 <!-- Aspects that a user can remove. Same as "visible" if left
 empty -->
 <removeable>
 </removeable>

 </aspects>

Available content types
The file share-config.xml controls which content types are available from the
user interface. To override the standard list, copy the following code, which defines
the available content types, modify as appropriate, and paste into the file share-
config-custom.xml:

<types>
 <type name="cm:content">
 <subtype name="cm:mysubtype" />
 </type>

 <type name="cm:folder">
 </type>
</types>

Later on, we will be creating new content types, based on the types of documents
and records kept in your organization. This configuration makes the custom content
types available through the Share user interface. In the example here, a new content
type called cm:mysubtype is added to the content types available.

Access to the complete Alfresco repository from Share
Depending on the level of sophistication of the end user and also on the way in
which you intend to use Share within your organization, the ability to expose all of
the Alfresco repository from Share can either be a welcome capability or something
that you may prefer to turn off.

The default behavior in Share is for access to the Repository to be available. In the
long term, Alfresco plans to replace the JSF Explorer client with Share, so Share will
ultimately need to be able to handle all the repository and library service capabilities
that the Explorer client is now capable of doing.

Introduction to the Alfresco Share Records Management Site

[100]

The visibility of the Repository link is controlled by the RepositoryLibrary section
of the file share-config.xml. It is possible to configure this behavior by making
changes to the following XML block and adding it to the file share-config-custom.
xml:

<config evaluator="string-compare" condition="RepositoryLibrary"
 replace="true">
 <!--
 Whether the link to the Repository Library appears in the
 header component or not.
 -->
 <visible>true</visible>

 <!--
 Root nodeRef for top-level folder.
 -->
 <root-node>alfresco://company/home</root-node>

 <tree>
 <!--
 Whether the folder Tree component should enumerate child folders or
 not.
 This is a relatively expensive operation, so should be set to
 "false" for Repositories with broad folder structures.
 -->
 <evaluate-child-folders>false</evaluate-child-folders>

 <!--
 Optionally limit the number of folders shown in treeview throughout
 Share.
 -->
 <maximum-folder-count>500</maximum-folder-count>
 </tree>
</config>

To display or not to display the link is controlled by the <visible> tag. By changing
this code block, it is also possible to set the root folder from where the repository
navigation will start, and to configure properties for the display of the navigation tree:

Chapter 3

[101]

Records Management configuration
There are also some Spring-context bean files specific to Records Management.
These configuration files are located in the tomcat\webapps\alfresco\WEB-INF\
classes\alfresco\module\org_alfresco_module_dod5015 directory.

In particular, the file rm-job-context.xml is of interest. This file defines two
cron jobs that run at scheduled times in the background. One job sends e-mail
notifications when the records become due for review. The other job checks records
and updates them based on their lifecycle disposition instructions. The file defines
the cron schedule for when these background jobs will be run:

Filename Description
rm-webscript-context.xml Beans for RM Rest API
rm-action-context.xml The beans that implement RM actions
rm-capabilities-context.xml The beans that implement RM capabilities
rm-job-context.xml Sends out e-mail notifications for records that are

due for review and background process to check
and update record lifecycles

rm-service-context.xml The Records Management service registry
rm-public-services-security-
context.xml

The beans that the intercept method calls to the
repository services to enforce security based on
the currently authenticated user

Server log configuration file
The log4j.properties file for the Share application controls the level of detail
of output written at the server to the Alfresco log file. Information being logged
is specific to operations that occur in Share. The file is configured to allow very
granular control over what type of information or debug information will be written.
This file is located in the tomcat\webapps\share\WEB-INF\classes directory.

There is a companion parallel file, also called log4j.properties,
located in the tomcat\webapps\alfresco\WEB-INF\classes
directory. This file controls debugging information relative to Alfresco
repository operations. Often, to get debug information printed about a
repository operation that is initiated by a Share webscript accessing the
repository, it is necessary to also configure the settings in this file.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Introduction to the Alfresco Share Records Management Site

[102]

Dashboards
The first page of Alfresco Share that a user sees after logging into Share is the
dashboard. This is the user's home page. Dashboards show up in other parts of
Share too. For example, the first page of each Share site is also a dashboard and
is configured in a way that is identical to how the user home page dashboard is
configured.

We've seen that the user can customize the layout of the home dashboard page
and pick which of the dashlets will be available on that page. In a similar way, the
owner of each Share site can configure the way that the site dashboard page will be
presented to site members when they access the site.

Preset dashboard configurations
Both user dashboards and site dashboards have default layouts that are configured
with default or preset dashlets. Preset dashboard settings are configured in the file
presets.xml which is located in the directory share\WEB-INF\classes\alfresco\
site-data\presets.

When we open the presets.xml file, we find that it consists of groups of <preset>
tags. The overall structure of the file presets.xml can be seen here:

<?xml version='1.0' encoding='UTF-8'?>
<presets>
 <!-- Well known preset used to generate the default Collaboration
 Site dashboard -->
 <preset id="site-dashboard">
 ...
 </preset>

 <!-- Well known preset used to generate the default User dashboard
 -->
 <preset id="user-dashboard">
 ...
 </preset>

 <!-- Well known preset used to generate the default RM Site
 dashboard -->
 <preset id="rm-site-dashboard">
 ...
 </preset>

 <!-- Well known preset used to generate the Sharepoint protocol
 integration Site -->
 <preset id="document-workspace">
 ...

Chapter 3

[103]

 </preset>

 <!-- Well known preset used to generate the Sharepoint protocol
 integration meeting Site -->
 <preset id="meeting-workspace">
 ...
 </preset>
</presets>

The first three <preset> tag sections of the file define default configurations for
site dashboards, user dashboards, and the dashboard for the Records Management
site. Let's look now in detail at the structure of the data defined in the <preset> tag
sections.

The preset IDs for the dashboards defined in this file correspond to the unique ID of
a type of dashboard. For example, when a site is created, it is assigned the ID site-
dashboard; when the Records Management site is created, the rm-site-dashboard
ID is assigned; and when a user is created, the user-dashboard ID is assigned.

An example of when the ID is assigned to a dashboard element can be found in
the file webapps\share\WEB-INF\classes\alfresco\site-webscripts\org\
alfresco\modules\create-site.get.js. This JavaScript controller contains code
that hardcodes the ID to be used with sites as site-dashboard:

var sitePresets = [{id: "site-dashboard",
 name: msg.get("title.collaborationSite")}];
model.sitePresets = sitePresets;

In a similar way, when the Records Management site is first created, the file
webapps\share\WEB-INF\classes\alfresco\site-webscripts\org\alfresco\
utils\create-rmsite.get.js defines the ID of the site to be rm-site-dashboard.
Actually, we've already seen this in the previous chapter with the discussion of
setting up the Records Management dashlet.

Preset dashboard layout
Each preset section in presets.xml contains a <pages> tag section that defines
the parameters of the Spring Surf dashboard page. Here we see the preset page
specification for a site dashboard, as configured in the presets.xml file:

<pages>
 <page id="site/${siteid}/dashboard">
 <title>Collaboration Site Dashboard</title>
 <title-id>page.siteDashboard.title</title-id>
 <description>Collaboration site's dashboard page</description>
 <description-id>page.siteDashboard.description</description-id>
 <template-instance>dashboard-3-columns</template-instance>

Introduction to the Alfresco Share Records Management Site

[104]

 <authentication>user</authentication>
 <properties>
 <sitePages>[{"pageId":"wiki-page"}, {"pageId":"blog-postlist"},
 {"pageId":"documentlibrary"},
 {"pageId":"calendar"},{"pageId":"links"},
 {"pageId":"discussions-topiclist"},{"pageId":"data-
 lists"}]</sitePages>
 </properties>
 </page>
</pages>

An important piece of configuration information defined here for the page is
the template-instance. In this example for the site dashboard, we can see that
it specifies, by default, to use the template called dashboard-3-columns. The
template-instance definition files can be found in the directory webapps\share\
WEB-INF\classes\alfresco\site-data\template-instances. That directory
also contains the other dashboard layouts that Share supports with no additional
customization. All five of the available dashboard template-instance layouts are
shown here:

dashboard-1-column.xml dashboard-2-columns-wide-left.xml

dashboard-2-columns-wide-right.xml dashboard-3-columns.xml

Chapter 3

[105]

dashboard-4-columns.xml

These five standard layout formats are referenced in the file webapps\share\
WEB-INF\classes\alfresco\site-webscripts\org\alfresco\components\
dashboard\customized-layout.get.js. Changing available layouts or adding
new ones can be done by modifying the list of layouts defined in this file. In the
Alfresco 3.3.1 release, available layout templates are hardcoded in a JavaScript array
as follows:

// Hardcoded templates until proper service exists
var layouts = [
 {templateId: "dashboard-1-column", noOfColumns: 1, description:
 msg.get("msg.template-1-column")},
 {templateId: "dashboard-2-columns-wide-right", noOfColumns: 2,
 description: msg.get("msg.template-2-columns-wide-right")},
 {templateId: "dashboard-2-columns-wide-left", noOfColumns: 2,
 description: msg.get("msg.template-2-columns-wide-left")},
 {templateId: "dashboard-3-columns", noOfColumns: 3, description:
 msg.get("msg.template-3-columns")},
 {templateId: "dashboard-4-columns", noOfColumns: 4, description:
 msg.get("msg.template-4-columns")}
];

Looking back again at the page tag of a preset definition in presets.xml for the site
dashboard, we also see that default site pages are defined. This information is stored
in the property sitePages. By default, a standard site will include pages for a wiki, a
blog, a document library, a calendar, a list of links, a discussions page, and a data list
page. These page links are visible across the top of the site as seen here:

Introduction to the Alfresco Share Records Management Site

[106]

The pages of the Records Management site are defined in the presets.xml file
as follows:

<pages>
 <page id="site/${siteid}/dashboard">
 <title>Records Management Site Dashboard</title>
 <title-id>page.rmSiteDashboard.title</title-id>
 <description>Records Management site's dashboard
 page</description>
 <description-id>page.rmSiteDashboard.description</description-id>
 <template-instance>dashboard-3-columns</template-instance>
 <authentication>user</authentication>
 <properties>
 <sitePages>[{"pageId":"documentlibrary"},
 {"pageId":"rmsearch"}]</sitePages>
 <pageMetadata>{"documentlibrary":{"titleId":"page.
rmDocumentLibrary.
 title", "descriptionId":"page.rmDocumentLibrary.description",
 "type":"dod5015"}}</pageMetadata>
 </properties>
 </page>
</pages>

As we can see from this file, by default, there are only two pre-configured site pages
for Records Management—the document library (or File Plan), and the Records
Search page. In the next image, we can see these page navigation links as they are
displayed across the top of the Records Management site:

Another thing to notice in the Spring Surf page description is that the text labels
for the dashboard page titles and description are defined. The <title-id> and the
<description-id> tags contain this information. The text strings referred to by
the values for these tags are stored in properties files. For example, text strings like
page.rmSiteDashboard.title, which is the default title for a site dashboard, can
be found in webapps\share\WEB-INF\classes\alfresco\messages\slingshot.
properties, and the strings for the Records Management site can be found in
webapps\share\WEB-INF\classes\alfresco\messages\dod5015.properties.

Chapter 3

[107]

Preset dashboard dashlets
The presets.xml file also defines which dashlets are to be included on the
dashboard layouts and where the dashlets will be positioned in the layout. In the
presets.xml configuration file, the dashlet region-id positions are named based
on their position in the layout. The convention is to name the region-id in the
format component-<column>-<row>. For example, the region-id component-2-1
refers to the first row position at the top of the second column.

The dashlets that appear on a dashboard are defined in the components section for
the dashboard preset definition. For example, the components definition for the
Records Management dashboard is defined as follows:

<components>
 <!-- title -->
 <component>
 <scope>page</scope>
 <region-id>title</region-id>
 <source-id>site/${siteid}/dashboard</source-id>
 <url>/components/title/collaboration-title</url>
 </component>
 <!-- navigation -->
 <component>
 <scope>page</scope>
 <region-id>navigation</region-id>
 <source-id>site/${siteid}/dashboard</source-id>
 <url>/components/navigation/collaboration-navigation</url>
 </component>
 <!-- dashboard components -->
 <component>
 <scope>page</scope>
 <region-id>component-1-1</region-id>
 <source-id>site/${siteid}/dashboard</source-id>
 <url>/components/dashlets/site-welcome</url>
 </component>
 <component>
 <scope>page</scope>
 <region-id>component-2-1</region-id>
 <source-id>site/${siteid}/dashboard</source-id>
 <url>/components/dashlets/docsummary</url>
 <properties>
 <dod5015>true</dod5015>
 </properties>
 </component>
 <component>

Introduction to the Alfresco Share Records Management Site

[108]

 <scope>page</scope>
 <region-id>component-2-2</region-id>
 <source-id>site/${siteid}/dashboard</source-id>
 <url>/components/dashlets/activityfeed</url>
 </component>
 <component>
 <scope>page</scope>
 <region-id>component-3-1</region-id>
 <source-id>site/${siteid}/dashboard</source-id>
 <url>/components/dashlets/site-profile</url>
 </component>
 <component>
 <scope>page</scope>
 <region-id>component-3-2</region-id>
 <source-id>site/${siteid}/dashboard</source-id>
 <url>/components/dashlets/colleagues</url>
 </component>
</components>

First, the title and navigation components are defined for the page. After that,
each of the preset dashlets for the dashboard is defined. The URL tag specifies the
unique path identifier for the dashlet and the region-id defines the position on the
dashboard where the dashlet will appear, using the convention for positioning that
we just discussed. The next figure labels the dashlets by position and URL name on
a screenshot of the preset Records Management site dashboard:

Chapter 3

[109]

Modifying the preset dashboard configurations
The Alfresco architecture was designed in a way to provide for a high degree of
configurability as we have seen. By modifying the presets.xml file, we can redefine
the initial dashboard settings for both user and site dashboard pages. We have seen
that both the layout of the dashboard and dashlets can be configured in this file.

But Alfresco best practice is not to directly modify Alfresco source files. Instead
changes to standard configuration files should be stored in the extension and
web-extension directories. Files placed in these directories override settings
found in standard Alfresco files.

In the case of the preset.xml file, best practice would be to create a new file in
the directory called tomcat\shared\classes\alfresco\web-extension\site-
data\presets\presets.xml. We can in fact do that, and Alfresco will pick up our
modified presets.xml file, but the changes we make may not be applied in the way
that we intended.

Attempting to override the presets.xml file in this way, at least in the Alfresco
Share 3.3.1 release, tries to aggregate all components for the dashboard that are
defined in both the original file as well as the override file. Components from both,
the standard presets.xml file and the new override file in the web-extensions area
will be merged. New components that you define in the override file will display,
but standard components will continue to display in the column where they were
originally defined. Because of this, when overriding in this way, it isn't possible to
remove any of the standard dashlet components. This behavior is a bug which may
be corrected in a future version of Share.

So, if you wish to modify the preset configuration, the recommendation would be to
create an override file and place it in the web-extension\site-data\presets area
like we just discussed, restart the server, and then check your results. If the layout
isn't what you expected, at least in the short term, until this behavior is changed, it
is necessary to make changes directly to the standard Alfresco presets.xml file.

Remember that when a dashboard is created for the first time, the
configuration that it uses is based on dashboard settings found in
presets.xml. The newly created dashboard configuration is then saved.
Any changes made later to the presets.xml file will be applied only to
newly created dashboards for users and sites. Dashboards that existed
prior to changes in the presets.xml file will not be affected.

Introduction to the Alfresco Share Records Management Site

[110]

Persistence of dashboard configurations
We have just seen how initial dashboard layouts are defined by using the
presets.xml file. Once the dashboard is created, and each time it is modified
from the Alfresco Share user interface, the dashboard configuration is saved.

Alfresco is in the middle of re-architecting Web Content Management
(WCM) and the AVM storage area used by WCM. The goal is to ultimately
unify the AVM content storage with the standard Alfresco repository
storage. Because of that, in the future, there may be refactoring or changes
made with the way that Alfresco Share persists data to the AVM store.

Using the Node Browser to find persisted dashboard data
The persisted dashboard configuration information is currently stored within the
Alfresco storage area called AVM. We can use the Node Browser tool within the
administration console of the Alfresco JSF Explorer client to see how the dashboard
configuration information is persisted within Alfresco. The Node Browser feature is
not yet available via the Share interface.

To access the Node Browser, open the Alfresco JSF client. For example, in a local
installation, the Alfresco JSF explorer client can be accessed at:

http://localhost:8080/alfresco

Chapter 3

[111]

Log in as the administrator and then click on the Administration Console. From
there, the Node Browser can be accessed:

Within the Node Browser, click on the Store labeled avm://sitestore. This storage
area is typically used for storing Web Content Management assets, but it is also used
by Alfresco Share for storing application data. At the top level of the AVM Store,
scroll down the page and you will see a list of the child nodes that exist at the root of
the store:

Introduction to the Alfresco Share Records Management Site

[112]

Next, click on the child node link labeled something like avm://sitestore/-
1;alfresco. After navigating into this first child node, scroll down again to see
the children of the new node:

At this point, we have navigated into the Alfresco Share site-data node. Under
this node, Share site data is persisted. Again, navigate a level lower by clicking on
the link for the child node named site-data. After doing that, at the level we are
within the node hierarchy, we can again scroll down and find the children of this
node. Here we can see the children containing additional site information for site
components and site pages:

AVM Store Share component nodes
If we first look at the child nodes for the components node, we will see something
like the following list of children. Here we recognize the components from the site
and user dashboards:

Chapter 3

[113]

If we click through on any of these child nodes, we will see the detailed properties
associated with these component nodes. The information shown near the top of the
node browser screen for any one of these nodes looks similar to the following table:

Introduction to the Alfresco Share Records Management Site

[114]

Here we can see that the value for the property {http://www.alfresco.
org/model/content/1.0}content is contentUrl=store://2010/7/29/
19/30/56033ae2-0b3c-4290-9422-a3162c9b8bbc.bin|mimetype=text/
xml|size=284|encoding=utf-8|locale=en_US_. This is a bit cryptic, but the
first part of the value represents the location of the XML data on disk in the
Alfresco repository.

In this example, the following is the file path: 2010/7/29/19/30/56033ae2-0b3c-
4290-9422-a3162c9b8bbc.bin.

If we look at the Alfresco alf_dir location on disk, we can locate a file at the path
location of C:\Alfresco\alf_data\contentstore\2010\7\29\19\30\56033ae2-
0b3c-4290-9422-a3162c9b8bbc.bin. The file ends with a binary file extension, but
if we open the file in a text editor, we can see that the contents of the file are actually
in XML. In this example, we can see the XML fragment for this component:

<?xml version="1.0" encoding="UTF-8"?>

<component>
 <guid>page.component-1-1.site~operations~dashboard</guid>
 <scope>page</scope>
 <region-id>component-1-1</region-id>
 <source-id>site/operations/dashboard</source-id>
 <url>/components/dashlets/site-welcome</url>
</component>

By using this technique, although it is somewhat tedious, it is possible to find where
Share site configuration information for individual components is persisted.

AVM Store Share page nodes
In a similar way, we can also drill down to find persisted Share data for pages.
Above, we saw how to find the child node for Share page site-data in the node
browser. If we click on that site-data page node, we come to a page where there
are two child nodes:

Here we see that page data that is specific to a site and common to all users is stored
under a child node named site. Page data that is stored as a per-user preference
configuration is stored under the user node.

Chapter 3

[115]

If we first investigate the site node, we find that it too has child nodes, one for each
site defined within Share:

Clicking on one of the sites, like the rm site (the Records Management site
shortname), we can see the node within the AVM Store where data for the Records
Management site is persisted:

If we click through on this node, we can find the XML fragment file in the Alfresco
repository where the persisted Records Management dashboard page information
is stored.

If we go back to the user page node that we saw above and click on that now, we'll
find persisted page information grouped by individual users. In this example, the
only user defined in the system is user admin:

Clicking on this child node, we can see the user preferences for user admin that are
persisted for the user dashboard home page. Finally, clicking through on this node,
we would then find the reference to the XML file fragment stored in the Alfresco
repository:

Introduction to the Alfresco Share Records Management Site

[116]

Modifying existing user dashboards
We saw above that modifying the presets.xml configuration file can cause all new
user and site dashboards to take on this default information. Any dashboards that
had been created prior to the change in the presets.xml file would not be affected.

To change dashboard component and page information that existed prior to
modifying the presets.xml file, it's necessary to manually re-configure the
dashboards using the Share user interface. This can be a daunting job if you need to
change very many dashboard pages.

Another option to fix outdated dashboards would be to programmatically use the
technique of finding the persisted component and page data for each pre-existing
dashboard in the AVM store and then add, remove, or overwrite those file fragments
with the new dashboard information.

Programmatically accessing persisted dashboard
data
The root-scoped object called sitedata plays a key role in server-side JavaScript
webscripts that access and manipulate Alfresco Share site data. We saw in the
previous chapter how the sitedata object was used during the creation of the
Records Management site. Now, let us see how we could use it to gain access to
persisted dashboard component and page data.

Using JavaScript, we can reference a user dashboard page object using the following
syntax: sitedata.getPage("user/admin/dashboard"). If we also append the
toXML() method to this object, we can more easily see the contents of the object. It
will look something like this:

sitedata.getPage("user/admin/dashboard").toXML()

<page>
 <title>User Dashboard</title>
 <title-id>page.userDashboard.title</title-id>
 <description>Users dashboard page</description>
 <description-id>page.userDashboard.description</description-id>
 <authentication>user</authentication>
 <template-instance>dashboard-4-columns</template-instance>
 <page-type-id>generic</page-type-id>

</page>

Chapter 3

[117]

Here we see an XML fragment that describes the dashboard page object. The
definition includes the name of the template-instance, title and description. In
a similar way, we can query and find the XML content for this template-instance:

sitedata.findTemplate("user/admin/dashboard").toXML()

<?xml version="1.0" encoding="UTF-8"?>

<template-instance>
 <template-type>org/alfresco/dashboard</template-type>
 <description>Four columns</description>
 <properties>
 <gridClass>yui-g</gridClass>
 <gridColumn1>5</gridColumn1>
 <gridColumn2>5</gridColumn2>
 <gridColumn3>5</gridColumn3>
 <gridColumn4>5</gridColumn4>

 </properties>
</template-instance>

Instead of using sitedata.findTemplate(), we could have found the template-
instance XML data using this command: sitedata.getTemplate("dashboard-
4-columns").toXML(), where we discovered the template-instance name
dashboard-4-columns in the XML result from getPage().

In a similar way, we could query dashboard component information too. For
example, consider the following:

sitedata.getComponent("page", "component-2-2", "user/admin/
dashboard").toXML()

<?xml version="1.0" encoding="UTF-8"?>

<component>
 <guid>page.component-2-2.user~admin~dashboard</guid>
 <scope>page</scope>
 <region-id>component-2-2</region-id>
 <source-id>user/admin/dashboard</source-id>

 <url>/components/dashlets/my-activities</url>
</component>

A complete description of sitedata and other root-scoped objects that
are available within the Spring Surf web framework in Share can be found
on the Alfresco wiki: http://wiki.alfresco.com/wiki/Surf_
Platform_-_Freemarker_Template_and_JavaScript_API

Introduction to the Alfresco Share Records Management Site

[118]

In the previous subsection, we mentioned that in some cases it might be desirable to
programmatically update large numbers of dashboard configuration settings. The
JavaScript code used in Share for manually updating dashboards provides good
examples of how to programmatically interact with the sitedata root-scoped object
to add, modify, and delete dashlets on a dashboard.

Code in the JavaScript file webapps\share\WEB-INF\classes\alfresco\site-
webscripts\org\alfresco\components\dashboard\customize-dashlets.get.
js provides an example of how to find and get references to the dashlets contained
on a dashboard page. The JavaScript file customize-dashboard.post.json.js
in that same directory gives good examples of how to manipulate dashlets. For
example, that JavaScript file uses the following code to delete a dashlet:

sitedata.unbindComponent("page", regionId, dashboardPage);

That same JavaScript file also has an example that demonstrates how to add a
new dashlet:

sitedata.newComponent("page", newDashlet.regionId, dashboardPage);

Creating a new Share theme
With a background understanding of CSS files, creating a new theme within Share is
a fairly straightforward task.

The best way to start is to navigate to the tomcat\webapps\share\themes directory.
There you will see directories, one for each of the standard available themes. Choose
one of these directories other than the default one, like greenTheme.

Copy this entire folder for the theme and all of the files in it and then rename the
folder based on the name of the new theme. We need to make the copy directly in the
webapps\share\themes directory. Rename the new directory. Here we will just use
the name newTheme. Copying the default theme folder may work as well, but in early
releases of Alfresco theming, there were some problems with using the default folder
because the default theme files had some references in them that were valid only for
the default theme.

Next copy the file tomcat\webapps\share\WEB-INF\classes\alfresco\site-
data\themes\greenTheme.xml to tomcat\shared\alfresco\web-extension\
site-data\theme\newTheme.xml.

The contents of this file should be edited to look something like:

<?xml version='1.0' encoding='UTF-8'?>
<theme>
 <title>New Theme</title>

Chapter 3

[119]

 <title-id>theme.newTheme</title-id>
</theme>

Finally, restart the Alfresco server's software. That is all you need to do to make a
new theme available for configuration in the admin console. After doing that, by
making changes to the CSS files and images in the new theme folder, the new look
for the theme can be created.

While there is a single theme applied to the whole Share site, that
theme can be overridden for a single page by appending the parameter
theme=newTheme to the URL for the page. For example, the following
URL will display the dashboard for the Records Management site using
the newly created theme:
http://localhost:8080/share/page/site/rm/
dashboard?theme=newTheme.

Share site top navigation toolbar
We saw in the previous section how the presets.xml file initialized the pages that
are assigned to a site. In standard sites, site pages will be links to things like wiki
or blog pages. In the Records Management site, there are only two preset page
navigation links, and they are both unique to Records Management. Preset Records
Management site page links are for the File Plan and for Records Search.

To see how the Share top navigation toolbar is constructed, it is useful to
examine the files in the directory webapps\share\WEB-INF\classes\
site-webscripts\org\alfresco\components\navigation\
collaboration-navigation. The JavaScript file collaboration-
navigation.get.js builds the list of page links to include in the
toolbar. The file collaboration-navigation.get.html.ftl
contains the FreeMarker markup that specifies the layout of the toolbar.
From the markup of the layout, we see that each Share site will always
include a link to get to the top-level dashboard for the site at the
beginning and another link to access the members of the site as the last
item on the toolbar.

Introduction to the Alfresco Share Records Management Site

[120]

Share Site secondary navigation header bar
If we click into any of the pages from the top navigation, a secondary set of menu/
icon links then becomes available. For example, if we are at the dashboard level of
the Records Management site and we click on the File Plan link, we will go to the
File Plan page where there is a secondary top navigation toolbar or header bar that
includes options like New Series, File, Import, and Report:

Like most of the user interface code everywhere else in Share, this secondary toolbar
is controlled via a presentation webscript. In the Records Management site, the
base name for the webscript is dod5015-toolbar.*. For standard Share sites, the
corresponding webscript files are named toolbar.*, and those files rely heavily on
the library files include\toolbar.lib.js and include\toolbar.lib.ftl. The
JavaScript controller and FreeMarker files for these webscripts are located in the
directory webapps\share\WEB-INF\classes\alfresco\site-webscripts\org\
alfresco\components\documentlibrary.

For Records Management, file dod5015-toolbar.get.html.ftml defines the
presentation markup for the secondary toolbar. File dod5015-toolbar.get.js is the
JavaScript controller file and it determines the preferences for the user accessing the
page and the available actions that will display in the drop-down action menu that
applies to the selected row items.

Summary
In this chapter, we have seen how the Alfresco Records Management site functions
within the Alfresco Share application. The Records Management site shares many of
the same features as standard Share sites, and we have seen that it can be configured
to include some of the same collaboration features used in other Share sites.

Chapter 3

[121]

We have also seen one big way that the Records Management site differs from
standard Share sites, and that is with the document library. Records Management
extends the standard site document library to work as a Records Management File
Plan. The File Plan is aware of specialized Records Management folder types. A
companion Records Search page provides the capability of performing very detailed
record searches.

In this chapter, we covered the following topics:

•	 The basic framework for Alfresco Share sites
•	 Share dashboards and sites
•	 Inviting users and managing the members of a Share site
•	 The Records Management File Plan and Records Search pages

At the end of this chapter, in a 'How does it work?' section, we looked in detail at
Share internals for the user and site dashboards. We discussed how dashlets are
assigned to dashboards and where their configuration information is persisted in
the Alfresco repository.

We now have Alfresco Records Management software up and running and a much
better understanding of the Alfresco Share environment in which the Records
Management site runs. In the next chapter, we will begin looking at metadata and
the Alfresco content model, and specifically examine the content model used by
Records Management and how it can be modified or extended.

Metadata and the Alfresco
Content Model

In Chapter 3, we took a high-level tour of Alfresco Share and the Share Records
Management site. In this chapter, we will look at the Alfresco Content Model and
specifically look at the part of the model that is relevant to Records Management.

In this chapter, we will describe:

•	 What the Alfresco Content Model is and what elements comprise it
•	 How to design, create, and deploy a new content model
•	 How the Alfresco Records Management Content Model is structured

This chapter describes the mechanics for entering and configuring the content model
within Alfresco. Each of the basic elements of the content model is discussed—types,
aspects, properties, constraints, and associations. We will discuss how you can use
these content model building blocks to design and build your own model. We'll
then show how a new content model can be installed and made available from the
Alfresco Share user interface.

Later in the chapter, we will look in detail at the built-in Alfresco Records
Management Content Model. The model reveals much about the inner workings of
Records Management within Alfresco and it also provides a very useful example of
how a very rich content model can be created.

Metadata and the Alfresco Content Model

[124]

The Alfresco Content Model
Content and metadata storage is a core capability of an enterprise content
management system, and it is an area where Alfresco excels. The content model is
the framework that prescribes exactly how content data will be stored and how it
later can be searched for retrieval. The model describes the structure, the format,
and inter-relationships of content. It also provides the framework for organizing
content and assigning meaning to it.

While the Alfresco Content Model is built from a very small set of components,
the richness and flexibility of those components enable potentially very complex
content models to be created.

The content model is actually segmented into a collection of models. For example,
Records Management and Workflow are each implemented as separate models.

Each of the individual models contains the description for the specific types of
content that can be stored in the repository. Each content type contains a fixed
set of metadata properties. Constraints can be applied to properties to limit or to
closely define the range of the allowed values for the properties. Associations can
also be modeled and associated with types to define relationships between content
items such as parent-child relationships or content-to-content references. Dynamic
properties and associations can be added at runtime by applying aspects to the
content.

When a new piece of content is added to the Alfresco repository, a structure called
a node is created to hold the content. Each node gets added to a tree of nodes in the
repository and is associated with at least one other node in the tree that acts as its
parent. Every node is assigned a content type from the content model. A node can
be associated with only a single content type at any one time, although the type
of a node could potentially change. Aspects containing additional properties and
associations can also be added to or removed from the node at any time.

Alfresco also supports the ability to set ad hoc properties on a node,
ones not defined by properties associated with either the type or with
applied aspects. Ad hoc properties can be stored as name-value pairs in
a generic property bag associated with a node and are called residual
properties. While there may be isolated cases where the use of residual
properties makes sense, a suggested best practice is to avoid the use of ad
hoc properties and to explicitly define all properties that will be needed
within the content model.

Chapter 4

[125]

The model namespace
Creating new content models requires us to assign names to the elements of the
models that we define. Our new model must be defined in a way that allows it to
globally co-exist with the names used within all other content models that have
already been defined.

A common problem that occurs when creating new element names for a content
model is to have a name conflict with the name of an element already used by
another model definition. Name conflicts can cause the software to not run at all or
for data to become accidentally corrupted because of confusion over the naming of
the elements.

Suppose, for example, that we decide to add a new property called container to a
document type that we define in our new custom model. There would be a problem
because that name conflicts with the Alfresco repository system content model that
already has a property named container.

To avoid naming conflicts like this between content models, Alfresco uses
namespaces. A namespace groups together all the elements of the content model
and also provides a way to create names that will guarantee their global uniqueness.

Alfresco namespaces
Namespaces are typically written as URI strings that start with an HTTP address,
usually belonging to the author or the author's company, and then followed by a
path that describes or organizes the types of elements contained in the namespace.
All standard Alfresco namespaces have URIs that start with http://www.alfresco.
org. The URI typically ends with the version number for the namespace.

The table below shows a list of standard Alfresco Content Model namespaces. The
namespace URIs can be quite long and writing code that appends the namespace
URI to model element names everywhere can make for some very verbose and
clumsy-looking code.

Metadata and the Alfresco Content Model

[126]

To avoid having to always append the namespace URI to an element name,
namespace prefixes are defined that significantly shorten the namespace reference.
So, instead of having to refer to an element like {http://www.alfresco.org/
model/system/1.0}container, we can even simply write sys:container. The
next table lists the prefixes that are used by convention when referring to Alfresco
namespaces. The files defining these models can be found in the tomcat\webapps\
alfresco\WEB-INF\classes\alfresco\model directory.

Common Prefix Namespace Description
alf http://www.alfresco.org General Alfresco

Namespace
app http://www.alfresco.org/model/

application/1.0
Application Model

bpm http://www.alfresco.org/mod

el/bpm/1.0

Business Process
Model

cm http://www.alfresco.org/model/
content/1.0

Content Domain
Model

d http://www.alfresco.org/model/
dictionary/1.0

Data Dictionary Model

fm http://www.alfresco.org/model/
forum/1.0

Forum Model

st http://www.alfresco.org/model/
site/1.0

Site Model

sys http://www.alfresco.org/model/
system/1.0

Repository System
Model

dod http://www.alfresco.org/model/
dod5015/1.0

DoD 5015.2 Records
Management Model

rma http://www.alfresco.org/model/
recordsmanagement/1.0

Records Management
Model

Important namespaces that you'll see frequently referred to are the Content Domain
Model and the Dictionary Model. New content models typically inherit from or
reuse definitions of these foundational models. You might also notice the Site Model
included in this list. The Site Model supports the management of data related to
Alfresco Share sites. At the end of the list, there are also two content models that are
used by the Alfresco Records Management implementation that we will talk about
towards the end of the chapter.

Chapter 4

[127]

Types
Types in the Alfresco Content Model provide a way to classify content as it is added
to the repository. Every node in the repository is assigned a single type, and the
type brings along with it a set of properties, associations, and even aspects that are
relevant for that kind of content.

Types must be uniquely named and include the namespace prefix at the beginning of
the type name. Available elements that are enclosed by the <type> tag for describing
the behavior of a type are as follows:

•	 title—a title for the type. A text string that documents the type.
•	 description—a description for the type. A text string that documents

the type.
•	 parent—the parent type of this type. Types can inherit from the definition

of their parent type. The root type from which all types inherit is called
sys:base. Subtypes inherit property, association, and constraint definitions
from their parent type. Types can be nested to any depth.

•	 archive—a Boolean flag that indicates when nodes of this type are deleted
that they are moved to the archive store as a sort of recycle bin area.

•	 properties—an element that encloses a list of properties for the type.
•	 associations—an element that encloses a list of associations for the type.
•	 mandatory-aspect—an element that encloses a list of aspects for the type.
•	 includedInSuperTypeQuery—a Boolean that determines if this type is to

be searched as part of a query over any of its parent types.
•	 overrides—an element that encloses a list of properties that override

parent properties.

The following features from parent properties can be overridden:

	° mandatory—a subtype can make a property mandatory, but cannot
relax a property declared mandatory by the parent.

	° default—the subtype can override or include a parent default value.
	° constraints—new constraints can be applied to a parent property, but

existing constraints inherited from the parent cannot be removed.

Metadata and the Alfresco Content Model

[128]

Note that when defining both properties and associations for a type, the properties
must be listed before the associations. It is also not possible to split the properties
within a tag among multiple <properties> tags; only a single <properties> tag
can be used within any one type definition. An example of the definition of a content
type can be found in the Records Management model for an rma:recordFolder:

<type name="rma:recordFolder">

 <title>Record Folder</title>
 <parent>cm:folder</parent>
 <archive>false</archive>

 <properties>
 <property name="rma:isClosed">
 <title>Record Folder Closed</title>
 <description>Indicates whether the folder is
 closed</description>
 <type>d:boolean</type>
 <protected>true</protected>
 <mandatory>true</mandatory>
 <default>false</default>
 </property>
 </properties>

 <mandatory-aspects>
 <aspect>cm:titled</aspect>
 <aspect>rma:recordComponentIdentifier</aspect>
 <aspect>rma:commonRecordDetails</aspect>
 <aspect>rma:filePlanComponent</aspect>
 </mandatory-aspects>

</type>

Overrides to properties inherited from the parent type can be defined in the subtype
as follows:

<type>
 ...
 <overrides>
 <property name="cm:autoVersion">
 <default>false</default>
 </property>
 </overrides>
</type>

Chapter 4

[129]

Properties
Properties are one of the most important components of the definition for types
and aspects. All properties in type and aspect definitions are grouped together
and enclosed by a single <properties> tag. Each property is uniquely named by
including a namespace prefix as the initial part of the name. The property name is
an attribute of the property called name, as in <property name="rma:location">.

Available elements that are enclosed by the <property> tag for describing the
behavior of a property are as follows:

•	 type—the data type of the property value. This element is required.
•	 title—a title for the property. A text string that documents the property.
•	 description—a description of the property. A text string that documents

the property.
•	 mandatory—a Boolean flag indicating whether or not the property is

mandatory. Mandatory properties must have a value before an attempt to
complete a transaction on a node with that property for it to be successful.
The mandatory flag is always enforced by the Alfresco web client. The
mandatory flag will also be enforced at the server when the <mandatory>
tag is further qualified with a true value for the enforced attribute. When
enforced is set to false, as in <mandatory enforced="false">, if the
property is not set at the time of the transaction, the transaction will not be
blocked, but after the transaction is completed, the node will be marked with
the sys:incomplete aspect.

•	 multiple—a Boolean flag that indicates that the property is able to support
multiple values. Multiple values are handled as a list.

•	 index—a Boolean flag that indicates that the property will be indexed and
searchable. If this flag is true, there are additional elements enclosed by the
tag that configure how the indexing will be performed. By selecting not to
index some properties, you can save index space. Very often, it is known in
advance that some properties will never need to be searched.

	° atomic—a Boolean flag that indicates that the property will
be indexed when a transaction on the node with this property
completes. The alternative to this is that the property will be
indexed as part of a background process that will run after the
node transaction is completed. Properties containing binary
content are typically indexed in the background.

Metadata and the Alfresco Content Model

[130]

	° stored—a Boolean value that indicates that the original value of the
property before being tokenized should be stored in the index. This
should only be done for properties that are expected to be relatively
short.

	° tokenized—a value of true, false, or both to indicate that the tokenized
value of the property is stored in the index. When the value of the
property is processed for indexing, the string will be cleaned, for
example, by removing whitespace, and broken into smaller pieces, like
individual words. Typically, it is useful to tokenize property values
that contain text, but not things like numbers or dates. When the value
is both, both the original and the tokenized strings are stored.

•	 constraints—the constraints on the allowed values for the property.
•	 default—the default value for the property.
•	 protected—no child of the content type will be able to override this property.

Every property must be typed. This means that each property is associated with a
data type that is defined by the type element. type is the only element of those listed
above that is mandatory when defining a property. Alfresco has a wide range of
data types available and it's possible to add more if the data type that you need isn't
available. However, for most cases, the standard data types offered by Alfresco are
most likely sufficient.

Because the core Alfresco software is written in Java, the data types available in a
content model parallel very closely the data types available in Java. The following
table lists some of the common data types available for use in the Alfresco Content
Model. The complete list of Alfresco data types can be found in the file tomcat\
webapps\alfresco\WEB-INF\classes\alfresco\model\dictionaryModel.xml.

Data type name Java equivalent Description
d:text java.lang.String A text or character string.
d:mltext Alfresco custom type Multilingual text. Able to store multiple

translations of a text string.
d:content Alfresco custom type Arbitrary content stored as a text or

binary stream.
d:int java.lang.Integer 32-bit signed two's complement integer.
d:long java.lang.Long 64-bit signed two's complement integer.
d:float java.lang.Float Single-precision 32-bit IEEE 754 floating

point.
d:double java.lang.Double Double-precision 64-bit IEEE 754

floating point.

Chapter 4

[131]

Data type name Java equivalent Description
d:date java.util.Date Date value.
d:datetime java.util.Date Date and time value.
d:boolean java.lang.Boolean Boolean data, either true or false.
d:locale java.util.Locale Locale to describe a geographical or

cultural region.
d:path Alfresco custom type A file path.
d:any java.lang.Object Any value, regardless of type.

Constraints
Constraints limit the allowed range of values for a property. Within a model XML
file, constraints can be defined independently of the definition for any one type or
aspect. Constraints defined in this way can then be reused as part of the property
definition anywhere within the model.

Note that there is no limit to the number of constraints that can be applied
to a property.

For example, cm:username, which is a property of the type cm:person, refers to the global
constraint cm:userNameConstraint. The following XML snippet from contentModel.
xml shows how a constraint reference can be made by using the ref attribute:

<property name="cm:userName">
 <type>d:text</type>
 <mandatory>true</mandatory>
 <constraints>
 <constraint ref="cm:userNameConstraint" />
 </constraints>
</property>

It is also possible to define an in-line constraint as part of the definition of the
property. In this case, the constraint cannot be applied to any other property
outside the one in which it is defined. A simple example of this is the following:

<property name="test:constrainedProp">
 <type>d:text</type>
 <constraints>
 <constraint type="LENGTH">
 <parameter name="minLength"><value>0</value></parameter>
 <parameter name="maxLength"><value>100</value></parameter>
 </constraint>
 </constraints>
</property>

Metadata and the Alfresco Content Model

[132]

Types of constraints
Alfresco out of the box supports four types of constraints, which will be discussed
in this section.:

REGEX constraint
The REGEX constraint enforces the syntax, spelling, or format for a property
value. The constraint expression is written using regular expression syntax.
Valid <parameter> names for this constraint are as follows:

•	 expression—the regular expression used to evaluate the incoming string.
•	 requiresMatch—a Boolean value, set to either true or false, to specify

whether the value must match the regular expression or must not match
the expression. The default for this parameter is true, that means that the
test will fail if the value does not match the regular expression.

An example of a REGEX constraint is cm:filename, which is used for matching valid
filenames. This constraint is defined as part of the content model. The definition is
shown here:

<constraint name="cm:filename" type="REGEX">
 <parameter name="expression">
 <value><![CDATA[(.*[\"*\\\>\<\?\/\:\|]+.*)|(.*[\.]?.*[\.]+$)|(.*[
]+$)]]></value>
 </parameter>
 <parameter name="requiresMatch"><value>false</value></parameter>
</constraint>

Another simpler example that simply constrains the value of the property to be
an all uppercase string is as follows:

<constraint name="test:regexExample" type="REGEX">
 <parameter name="expression"><value>[A-Z]*</value></parameter>
 <parameter name="requiresMatch"><value>true</value></parameter>
</constraint>

Regular expressions are extremely powerful, but writing one
can quickly become quite complex. There are many tutorials
available online or books written about how to write them.
Resources like http://regexlib.com/ offer a large library of
online regular expressions that can be reused and also provide
tools for online interactive debugging of regular expressions.

Chapter 4

[133]

LENGTH constraint
The LENGTH constraint enforces the lengths of strings to be within a range of
values. Valid <parameter> names for this constraint are as follows:

•	 minLength—the minimum allowed length for the string. The value must
be non-negative and less than or equal to maxLength.

•	 maxLength—the maximum allowed length for the string. The value must
be greater than or equal to the value of minLength.

Consider the following example of a LENGTH constraint where the length of the
string for the property value must be between 0 and 100:

<constraint name="test:lengthExample" type="LENGTH">
 <parameter name="minLength"><value>0</value></parameter>
 <parameter name="maxLength"><value>100</value></parameter>
</constraint>

LIST constraint
The LIST constraint forces the values of a property to be one of the values contained
in an enumerated list. Typically, a user will interact with entering the values for a
LIST-constrained property by selecting a value from a drop-down list containing all
allowed values. Valid <parameter> names for this constraint are as follows:

•	 allowedValues—a list of allowed string values for the property. While the
values are strings, it is possible for them to represent non-string values.

•	 caseSensitive—a Boolean value, set to either true or false. This flag specifies if
the case is case-sensitive. This parameter is optional and the default is true.

The Alfresco Content Model implementation for the DoD 5015.2 Records
Management specification contains the following example of a LIST constraint:

<constraint name="dod:imageFormatList" type="LIST">
 <title>Image Formats</title>
 <parameter name="allowedValues">
 <list>
 <value>Binary Image Interchange Format (BIIF)</value>
 <value>GIF 89a</value>
 <value>Graphic Image Format (GIF) 87a</value>
 <value>Joint Photographic Experts Group (JPEG) (all
 versions)</value>
 <value>Portable Network Graphics (PNG) 1.0</value>
 <value>Tagged Image Interchange Format (TIFF) 4.0</value>
 <value>TIFF 5.0</value>
 <value>TIFF 6.0</value>

Metadata and the Alfresco Content Model

[134]

 </list>
 </parameter>
 <parameter name="caseSensitive"><value>true</value></parameter>
</constraint>

MINMAX constraint
The MINMAX constraint enforces that a numeric value be within a range of
numbers. Valid <parameter> names for this constraint are as follows:

•	 minValue—the minimum allowed value for this property. minValue must
be less than or equal to the maxValue.

•	 maxValue—the maximum allowed value for this property. maxValue must
be greater than or equal to the minValue.

An example of a constraint on a numeric property that requires the number to be
between 0 and 1000 is shown next:

<constraint name="test:minMaxExample" type="MINMAX">
 <parameter name="minValue"><value>0</value></parameter>
 <parameter name="maxValue"><value>1000</value></parameter>
</constraint>

Custom constraint types can be written too, but doing that is a task
that needs to be done using Java. Built-in constraints are defined by
the Java package org.alfresco.repo.dictionary.constraint.
<property> values for each constraint correspond to the setter methods
of the Java class implementation for the constraint. An example and
description on how to do create a custom constraint can be found on the
Alfresco wiki: http://wiki.alfresco.com/wiki/Constraints.

Associations
Associations are relationships that are created between two types within the content
model. Associations are ultimately realized as relationships between nodes in the
repository and are controlled by the types assigned to the nodes. Associations
must be uniquely named and include the namespace prefix at the beginning of the
association name.

Two types of associations are possible—child associations and peer associations.
Both types of associations consider one of the types as the source and the other as
the target. The source is the type in which the association is defined.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[135]

Peer associations
For brevity, within the Alfresco Content Model, a peer association is simply referred
to as an association. Available elements that are enclosed by the <association>
tag for describing the behavior of an association are as follows:

•	 title—the title of the association. A text string to document the association.
•	 description—a description of the association. A text string to document

the association.
•	 source—an element that groups the parameter elements that define

the source of the association:

	° mandatory—a flag that specifies whether having an association
is mandatory.

	° many—a flag that specifies whether the source type can be
associated with more than one target.

•	 target—an element that groups the parameter elements that define the
target of the association:

	° class—the allowed type for the target element. Selecting a class like
sys:base would allow the target to be any kind of content, since all
types inherit from sys:base. This element is required for defining
the target.

	° mandatory—a flag that specifies whether having an association is
mandatory.

	° many—a flag that specifies whether the source type can be associated
with more than one target.

An example of a peer association can be found in contentModel.xml. The
association here defines a reference from one item to another piece of content:

<association name="cm:references">
 <source>
 <role>cm:referencedBy</role>
 <mandatory>false</mandatory>
 <many>true</many>
 </source>
 <target>
 <class>cm:content</class>
 <role>cm:references</role>
 <mandatory>false</mandatory>
 <many>true</many>
 </target>
</association>

Metadata and the Alfresco Content Model

[136]

Child associations
A child-association is described by the same set of enclosed elements.
Additionally, the following two elements are also supported as part of the
child-association definition:

•	 duplicate—is a Boolean flag, either true or false, that specifies whether or not
children of the parent node can have the same name. If it is not allowed, a
transaction cannot be committed until this condition is met.

•	 propagateTimestamps—is a Boolean flag, either true or false, that specifies
when making a change to a child element, that the timestamp of the parent
should also be updated.

An example of a child association can be found in the Records Management Content
Model. This example shows a holds area that is capable of tracking the holds that
have been placed:

<child-association name="rma:holds">
 <title>Holds</title>
 <source>
 <mandatory>false</mandatory>
 <many>false</many>
 </source>
 <target>
 <class>rma:hold</class>
 <mandatory>false</mandatory>
 <many>true</many>
 </target>
</child-association>

The mandatory flag is enforced whenever a node with the association is being
committed at the end of a transaction. This holds for both <association> and
<child-association> tags. If the mandatory flag is true, and if it is enforced, then
the commit will fail if the association element does not exist, specified by writing
<mandatory enforced="true">. If the mandatory flag is true but not enforced,
the commit will succeed, but an aspect called sys:incomplete will be applied to
the node.

When the two elements, mandatory and many, are considered together, they define
the cardinality of the association. The following table shows how the cardinality can
be determined, based on those two elements:

Chapter 4

[137]

mandatory = true mandatory = false
many = true 1 or more 0 or more
many = false 1 0 or 1

With a child association, if you delete the parent node, the child nodes will be
automatically deleted. In a peer association, deleting the source node will break
the association, but will not cause any other nodes to be deleted.

Aspects
Aspects are a shorthand method to group together property, association, and
constraint definitions. Aspects can be applied to repository nodes, type definitions,
or to the definition of other aspects. When an aspect is applied to, for example, a
node, the properties and associations defined in the aspect are taken from it and
added to those that already exist on the node. Application of aspects to types and to
other aspects works in a similar way.

Much of what an aspect does overlaps with the functionality of a type. For example,
like types, aspects support inheritance, with the concept of one aspect inheriting
from a parent aspect. The one difference between types and aspects is that every
node must have one and only one type, while any number of aspects can be applied
to a node.

The application of multiple aspects to a node is often compared to multiple
inheritance. Aspects can also be thought of as being similar to macros. A macro, once
defined, can be reused again by referring to it by its name. In the same sort of way,
a common practice in the Alfresco Content Model is to define an aspect and to then
apply it to many type and aspect definitions as a mandatory aspect. For example,
the aspect cm:titled from the content model is often used in the definition of a
type, bringing along with it standard definitions for the properties cm:title and
cm:description.

Another advantage of aspects is that they can be dynamically applied at runtime to
nodes. For example, when a record is declared within Records Management, only at
that time are the properties that are relevant to managing records appended to the
node. In this way, only metadata relevant to an object needs to be tracked. Aspects
create a clean way to assign metadata to objects and avoid tracking metadata fields
that are not relevant to an object.

Metadata and the Alfresco Content Model

[138]

The definition of an aspect is very similar to that of a type. Aspects must be uniquely
named and include the namespace prefix at the beginning of the aspect name.
Available elements that are enclosed by the <aspect> tag for describing the behavior
of an aspect are as follows:

•	 title—a title for the aspect. A text string that documents the aspect.
•	 description—a description for the property. A text string that documents

the aspect.
•	 parent—the parent aspect of this aspect. Aspects can inherit from the

definition of their parent aspect. Aspects can be nested to any depth in
inheritance.

•	 archive—a Boolean flag that indicates when nodes of this aspect are
deleted and are moved to the archive store as a sort of recycle bin area.

•	 properties—an element that encloses a list of properties for the aspect.
•	 associations—an element that encloses a list of associations for the aspect.
•	 mandatory-aspect—an element that encloses a list of aspects for the aspect.
•	 includedInSuperTypeQuery—a Boolean that determines if this aspect is to

be searched as part of a query over any of its parent aspects.
•	 overrides—an element that encloses a list of properties that override parent

properties.

The following features can be overridden:
	° mandatory—a child aspect can make a property mandatory, but

cannot relax a property declared mandatory by the parent.
	° default—the child aspect can override or include a parent default

value.
	° constraints—new constraints can be applied to a parent property,

but existing constraints inherited from the parent cannot be removed.

A good example of an aspect that is defined in the Alfresco Records Management
Content Model is rma:frozen. This aspect is applied to records that are subject to
a hold:

<aspect name="rma:frozen">
 <title>Frozen</title>
 <properties>
 <property name="rma:frozenAt">
 <title>Frozen At Date</title>
 <type>d:date</type>
 <mandatory>true</mandatory>

Chapter 4

[139]

 </property>
 <property name="rma:frozenBy">
 <title>Frozen By</title>
 <type>d:text</type>
 <mandatory>true</mandatory>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>false</tokenised>
 </index>
 </property>
 </properties>
 <mandatory-aspects>
 <aspect>rma:filePlanComponent</aspect>
 </mandatory-aspects>
</aspect>

Creating a new model
We now have a good understanding of the elements that go into defining a content
model, and we've seen a few code snippets that show examples of each of the
element types, but let's now try to bring all the pieces together by looking at the
steps needed to define a new content model from scratch.

Designing the model
Our main goal with the example that we will walk through next is to see what's
involved in creating a content model. Therefore, at this point, let's not focus too
much on the details of exact properties and metadata. When we look at the File Plan
later, we'll want to be more thorough in our analysis. For now, we'll focus on a very
high-level outline of the documents within a fictitious company that we will call
Typical Company, Inc, and that we will abbreviate as TC.

Before we even start thinking about what sort of XML we need to put together for
the TC model description file, it will be a lot easier and quicker overall if we first
carefully design what the structure of our content model will look like.

The model that we'll define needs to identify the document types that we will
manage. We aren't concerned with the Records Management part of the puzzle
just yet. In a later section in this chapter, we'll look in detail at the structure of the
Records Management Content Model and see how any document or content type
in Alfresco can be placed under Records Management.

Metadata and the Alfresco Content Model

[140]

A typical company is comprised of a number of departments, and the types of
documents in each of those departments are distinctly different. We will classify
our documents primarily along department lines. Finance, for example, deals with
documents related to general accounting, accounts receivable, accounts payable,
payroll, and taxes, to name a few. Whereas, the Legal department has documents
related to contracts, litigation, and patents. The metadata associated with each of
these different types of documents varies widely.

For the TC model, we will create a base content type called tc:generalDoc.
tc:generalDoc is actually a child type of cm:content. By inheriting from
cm:content, we will automatically have access to the mechanics for storing and
managing arbitrary binary content, like Microsoft Office documents, PDF files,
images, and text files. We will also make use of a few aspects that are already defined
within the standard Alfresco Content Model. cm:auditable is one of them. This
aspect taps into the auditing capability of Alfresco. With it, we can track detailed
information about any changes that happen to the documents, such as who made
the change, when the change was made, and exactly what was changed. cm:titled
is another aspect that tc:generalDoc inherits from. It defines the properties in a
standard way for the document title and description. The following diagram shows
the relationship between types and aspects for the TC model:

Chapter 4

[141]

tc:generalDoc also inherits from the aspect tc:companyInfo properties that
maintain the author name, the department, and the global regions in which the
company operates. The tc:companyInfo aspect is defined in the TC model.
tc:companyInfo is a child of a pre-existing aspect called cm:author, from which
it inherits the property for the author name.

Let's divide our base type hierarchy pretty much along department lines. For
now, let us consider the documents used within each of the company's six
departments (Administration, Engineering, Finance, Human Resources, Legal, and
Manufacturing) as the primary document types. These six new document type
groups all inherit from tc:generalDoc. Metadata that is relevant across the entire
group of documents can be inserted into these types.

To avoid making this example too complex, we will limit ourselves to looking
at two content types specific to the Finance department—invoices and expense
reports. To do that, we will create two types, namely, tc:supplierInvoice and
tc:expenseReport, that both inherit from the type tc:finDoc.

Implementing the model file
Each model in Alfresco is defined within a single XML model file. We'll call the file
for the model that we've just designed tcModel.xml. This custom model file needs
to be deployed into the directory tomcat\shared\classes\alfresco\extension\
model when it is complete. Let's look in detail now at the contents of this model
definition file.

The model file header
The file begins with an XML declaration tag. Next, the <model> tag defines the name
for the model. This tag encloses the entire model definition. Descriptor information
for the model includes the <description>, <author>, and <version> tags.

To avoid potential problems when defining the model name, you
should choose a name that is in lowercase and does not contain any
spaces or special characters.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Definition of new Model -->

<model name="tc:typicalcompany"
 xmlns="http://www.alfresco.org/model/dictionary/1.0">

 <!-- Optional meta-data about the model -->
 <description>Typical Company Model</description>
 <author>Dick Weisinger</author>
 <version>1.0</version>

Metadata and the Alfresco Content Model

[142]

Model import files
The definitions from other models, that this model references, are imported. In our
model, we will create properties that reference basic Alfresco content data types
defined in the Dictionary model. We also inherit from types and aspects that are
defined in the standard Alfresco Content Model. Both of these models are imported
here. Any existing model file could be potentially imported in order to reuse
previously defined elements.

Each import reference to the external content model includes a long-name uri and
a short-name prefix. The prefix is used as a shorthand that is pre-appended to
element names from these external models to identify clearly what their origin is:

<!-- Imports are required to allow references to definitions
 in other models -->
<imports>
 <!-- Import Alfresco Dictionary Definitions -->
 <import uri="http://www.alfresco.org/model/dictionary/1.0"
 prefix="d"/>

 <!-- Import Alfresco Content Domain Model Definitions -->
 <import uri="http://www.alfresco.org/model/content/1.0"
 prefix="cm"/>
</imports>

The model namespace
In a similar way to the syntax used to define the import of external models, we next
define the long and short names for this namespace. The uri typically identifies the
company or individual by whom the namespace is managed. For Typical Company,
we will use the prefix tc.

By convention, the uri for the model namespace typically ends with the version
number of the model. The prefix is shorthand to minimize the possibility of naming
clashes with the names of elements in other models. The prefix is being bound to
this uri for use in this file. The uri is the true identifier for the namespace. If you
were to import this file later into another model definition file, you may decide to
use a different prefix in that file to refer to this same uri, but it is best practice to
consistently use the same prefix across all files:

<namespaces>
 <namespace uri="http://www.typicalcompany.com/model/content/1.0"
 prefix="tc"/>
</namespaces>

Chapter 4

[143]

The model constraints
Next, we get into the actual definition of the various parts of the content model. We
start with the definition of the global constraints that will be used within the model.

For the TC model, we will define a single constraint. This constraint will later be
associated with the tc:region property that we define in the tc:companyInfo
aspect. This constraint, tc:regionList, is a list of global regions that Typical
Company breaks down as its sales regions:

<constraints>
 <constraint name="tc:regionList" type="LIST">
 <title>List of Company Regions</title>
 <parameter name="allowedValues">
 <list>
 <value>North East</value>
 <value>MidWest</value>
 <value>South</value>
 <value>South West</value>
 <value>West</value>
 <value>Europe</value>
 <value>Asia</value>
 <value>South America</value>
 </list>
 </parameter>
 <parameter name="caseSensitive"><value>true</value></parameter>
 </constraint>
</constraints>

The model types
Next, we define the types for the model. The first type declared is tc:generalDoc.
This type inherits from the standard Content Model type cm:content. Because of that,
all properties defined by cm:content will come along as part of this definition. In
addition to that, tc:generalDoc also applies a number of mandatory-aspects. These
aspects are applied immediately whenever a node of this content type is created.

For example, the aspect cm:auditable brings with it properties used for auditing
purposes like cm:created, cm:creator, cm:modified, cm:modifier, and the date
and time accessed, cm:accessed. The aspect cm:titled brings with it the properties
cm:title and cm:description:

<types>
 <type name="tc:generalDoc">
 <title>General Document</title>

Metadata and the Alfresco Content Model

[144]

 <parent>cm:content</parent>
 <archive>true</archive>
 <mandatory-aspects>
 <aspect>cm:auditable</aspect>
 <aspect>cm:titled</aspect>
 <aspect>tc:companyInfo</aspect>
 </mandatory-aspects>
 </type>

Next, we define the types that inherit from tc:generalDoc:

 <type name="tc:admDoc">
 <title>Administrative Document</title>
 <parent>tc:generalDoc</parent>
 </type>
 <type name="tc:engDoc">
 <title>Engineering Document</title>
 <parent>tc:generalDoc</parent>
 </type>
 <type name="tc:finDoc">
 <title>Financial Document</title>
 <parent>tc:generalDoc</parent>
 </type>
 <type name="tc:insDoc">
 <title>Insurance Document</title>
 <parent>tc:generalDoc</parent>
 </type>
 <type name="tc:legDoc">
 <title>Legal Document</title>
 <parent>tc:generalDoc</parent>
 </type>
 <type name="tc:mfgDoc">
 <title>Manufacturing Document</title>
 <parent>tc:generalDoc</parent>
 </type>

Next, we define the two special content types that inherit from the tc:finDoc type
used for financial documents: tc:supplierInvoice and tc:expenseReport. Note
that all the properties defined for these types are specified as mandatory:

 <type name="tc:supplierInvoice">
 <title>Supplier Invoice</title>
 <parent>tc:finDoc</parent>
 <properties>
 <property name="tc:invVendor">

Chapter 4

[145]

 <title>Vendor for Invoice</title>
 <type>d:text</type>
 <mandatory>true</mandatory>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>false</tokenised>
 </index>
 </property>
 <property name="tc:invNumber">
 <title>Invoice Number</title>
 <type>d:int</type>
 <mandatory>true</mandatory>
 </property>
 <property name="tc:invAmount">
 <title>Invoice Amount</title>
 <type>d:double</type>
 <mandatory>true</mandatory>
 </property>
 </properties>
 </type>

 <type name="tc:expenseReport">
 <title>Expense Report</title>
 <parent>tc:finDoc</parent>
 <properties>
 <property name="tc:expRptEmployee">
 <title>Employee Reporting Expense Report</title>
 <type>d:text</type>
 <mandatory>true</mandatory>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>false</tokenised>
 </index>
 </property>
 <property name="tc:expRptAmount">
 <title>Amount of Expense Report</title>
 <type>d:double</type>
 <mandatory>true</mandatory>
 </property>
 </properties>
 </type>
</types>

Metadata and the Alfresco Content Model

[146]

The model aspects
Finally, we define the custom aspects that are used in the TC Content Model. We
have a single new aspect, tc:companyInfo, which is an aspect that inherits from the
parent aspect cm:author. This aspect has two properties, namely, tc:department
and tc:region:

<aspects>
 <aspect name="tc:companyInfo">
 <title>Department/Region Source information</title>
 <parent>cm:author</parent>
 <properties>
 <property name="tc:department">
 <title>Department</title>
 <type>d:mltext</type>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>false</tokenised>
 </index>
 </property>
 <property name="tc:region">
 <title>Region</title>
 <type>d:text</type>
 <constraints>
 <constraint ref="tc:regionList" />
 </constraints>
 </property>
 </properties>
 </aspect>
</aspects>
</model>

Installing the model
With our content model definition ready, we can now go ahead and install it into
Alfresco. There are two options for doing this: bootstrap deployment and dynamic
deployment.

Chapter 4

[147]

Bootstrap deployment of the model
With bootstrap deployment, the new model is recognized and automatically installed
when the Alfresco server starts. Usually, when a model is fully debugged and ready,
it will be deployed in this way. The most efficient way to distribute a model to others
is by defining the files for bootstrap deployment.

Let's look at how bootstrap deployment works. In the previous section, we created
the model file tcModel.xml and saved it into the extension area tomcat\shared\
classes\alfresco\extension\model. However, Alfresco won't automatically
recognize the model file without a Spring definition file first referencing it. When the
server starts, Spring looks for context configuration files that end in –context.xml.
For the model file to be picked up, it needs to be referenced from a Spring context file.

We will create a Spring context file called typicalcompany-model-context.
xml that references the new content and save it to the tomcat\shared\classes\
alfresco\extension directory. In this file, we define a Java bean with a unique id
called typicalcompany.dictionaryBootstrap. The definition specifies the location
of our model file tcModel.xml. We also reference a properties file to hold any labels
associated with the model definition. The properties file is called typicalcompany-
model.properties and is stored in the same directory as the tcModel.xml file. Note
that the model file reference includes the complete filename with the .xml extension.
However, when referring to the labels file, we need to omit the .properties
extension. If this isn't done, these files won't be properly identified. The context file
looks like this:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN'
 'http://www.springframework.org/dtd/spring-beans.dtd'>
<beans>
 <!-- Registration of typical company content models -->
 <bean id="typicalcompany.dictionaryBootstrap"
 parent="dictionaryModelBootstrap" depends-
 on="dictionaryBootstrap">
 <property name="models">
 <list>
 <value>alfresco/extension/model/tcModel.xml</value>
 </list>
 </property>
 <property name="labels">
 <list>
 <value>alfresco/extension/model/typicalcompany-
 model</value>
 </list>
 </property>
 </bean>
</beans>

Metadata and the Alfresco Content Model

[148]

There isn't much in the properties file right now. If needed, more can be added to
this file later:

tc_typicalcompany.description=Typical Company Model

Dynamic deployment of the content model
An alternative deployment method to the bootstrap method we just described is
dynamic deployment. Dynamic deployment lets you iteratively develop and test the
creation of your new content model without having to continually stop and restart
the server to test your new changes.

Instead of referencing the model in a configuration file read on server startup,
the content model file is deployed directly to the content repository. This is done
by first uploading the model file into the repository folder Company Home\ Data
Dictionary\Models. Beginning in Share version 3.2R, full access to the Alfresco
repository is now available directly from Share, and starting with version 3.3, access
to the Alfresco repository in Share is turned on by default.

We can access the Alfresco repository via the Repository link along the top of
the Share window. Once in the repository, we can then navigate to the Data
Dictionary\Models folder. If you have already installed the new content model
via the bootstrap approach described in the previous section, and if you would like
to try using the dynamic method to install a model using the same type name, first
remove any content you had created of that type, remove the model bootstrap files,
and then upload the tcModel.xml file to the Models directory of the repository:

Chapter 4

[149]

Once the file is uploaded, bring up the dialog to edit the document metadata. In the
list of metadata, we can find the Model Active checkbox. We can check that box to
activate the model:

Once the Model Active field is set, the model will become available for use. Each
time you subsequently upload a new copy of the model file or edit the XML in
the file via the Share inline edit option, the updated model is re-registered and
re-activated immediately after being saved. This makes it easy to do interactive
development on a model without the need to continually restart the system after
every change to the model.

To deactivate a model added via the repository, uncheck the Model Active metadata
field. To completely delete the model, remove the model file from the repository.

A content model can be removed only if there are no nodes in the
repository that are currently associated with the model. Removing
property definitions from the model and then saving the model when
content is currently stored with those properties will cause errors. It's best
to use a development environment during the iterative process of first
building a content model.

Metadata and the Alfresco Content Model

[150]

Exposing a new content model from the Share
user interface
Even though the new model is deployed, we're not able to immediately see any signs
of it in the Share user interface. By default, the only content type that can be created
in Share is of type cm:content. New models aren't of much use if we aren't able to
access them from the user interface. But we can change that.

Adding Types to the site upload form
When we upload new content to the Document Library area of a site, we are
presented with a Flash-based form that allows us to navigate to a local directory and
to then select multiple files for upload. By default, there are no options on this form
that allow the user to select which content type will be assigned to the files when
they are uploaded.

There are two files specific to the Flash-based upload form that need to be
overridden to give us the option of selecting from additional content types on
upload. The override files need to be placed in the tomcat\shared\classes\
alfresco\web-extension\site-webscripts\org\alfresco\components\upload
directory.

The first one is a JavaScript file that contains a function that defines the array of
allowed content types. This is the only function contained in this file. If we decide
to expose only invoices and expense report content types from the TC model, the
file flash-upload.get.js will be modified to look something like the following:

function getContentTypes()
{
 // TODO: Data webscript call to return list of available types
 var contentTypes = [
 {
 id: "cm:content",
 value: "type.cm_content"
 },
 {
 id: "tc:supplierInvoice",
 value: "type.tc_invoice"
 },
 {
 id: "tc:expenseReport",
 value: "type.tc_expense"
 }
];

Chapter 4

[151]

 return contentTypes;
}

model.contentTypes = getContentTypes();

Each content type element of the JavaScript array has a value that refers to the label
of string in a properties file. The value for the id is the name of the content type
that will be displayed. The second file that needs to be defined is the properties file
flash-upload.get.properties. First we copy the contents of the original file from
tomcat\webapps\share\WEB-INF\classes\alfresco\site-webscripts\org\
alfresco\components\upload and then we add the following lines to the bottom of
the file:

type.tc_general=Company General
type.tc_adm=Administration
type.tc_eng=Engineering
type.tc_fin=Finance
type.tc_ins=Insurance
type.tc_leg=Legal
type.tc_mfg=Manufacturing
type.tc_invoice=Invoice
type.tc_expense=Expense Report

With these files in place, when we now go to upload new content, we see the changes
reflected in the upload form. A drop-down is added that allows the user to select
from additional content types:

Metadata and the Alfresco Content Model

[152]

Adding Types to the Change Type action
After uploading new content to the repository, one of the actions available is
to be able to change the type of that content. For example, if we uploaded a file
and assigned the file to be of type cm:content, we could later change the type to
tc:expenseReport.

Again, by default, there are no mappings defined that allow changes between
different content types. If you select the Change Type action, a dialog is displayed,
but no change selections are available.

Options for the Change Type action mappings can be made in the share-config-
custom.xml file found in the tomcat\shared\classes\alfresco\web-extensions
directory.

When we look in this file, we find a section of it with the following code:

<types>
 <type name="cm:content">
 </type>
 <type name="cm:folder">
 </type>
</types>

This is the section of the code that we want to change. We will add <subtype>
elements within the cm:content type block to define the mapping. Since
tc:supplierInvoice and tc:expenseReport are content types that inherit from
cm:content, it is possible to change nodes that have been assigned cm:content.
Changing the type from something like tc:supplierInvoice back to an ancestor
type like cm:content, which has fewer properties, isn't allowed:

<types>
 <type name="cm:content">
 <subtype name="tc:supplierInvoice" />
 <subtype name="tc:expenseReport" />
 </type>
 <type name="cm:folder">
 </type>
</types>

The way this mapping works is that when the Change Type action is selected for
a document of type cm:content, the subtypes defined here for that type will be
displayed from the dialog dropdown. If we then select the Change Type action for a
document of any type other than cm:content, no change options will be available.

Chapter 4

[153]

For example, while this isn't the behavior that we want, to demonstrate more clearly
how the content change mapping works, consider the following change mapping
type definitions:

<types>
 <type name="cm:content">
 subtype name="tc:generalDoc" />
 </type>
 <type name="cm:generalDoc">
 <subtype name="tc:supplierInvoice" />
 <subtype name="tc:expenseReport" />
 </type>
 <type name="cm:folder">
 </type>
</types>

In this case, we are able to change the content type from cm:content to
tc:generalDoc, but no other type directly, while a document of type
tc:generalDoc can be changed to either type tc:supplierInvoice or
tc:expenseReport.

Going back to the first definition, if we make this change to the configuration file,
Change Type options will begin to appear in the dialog. That's great, but the text that
appears for the items in the drop-down list will show items like tc_supplierInvoice
and tc_expenseReport. We need to create a property file with the mappings that will
correctly define the text labels for these items.

To do that, we first create the property file that contains the type labels for our new
model. We can create a new file tcmodel.properties and place this file in the
tomcat\shared\classes\alfresco\web-extension\messages directory:

type.tc_generalDoc=Company General
type.tc_admDoc=Administration Document
type.tc_engDoc=Engineering Document
type.tc_finDoc=Finance Document
type.tc_insDoc=Insurance Document
type.tc_legDoc=Legal Document
type.tc_mfgDoc=Manufacturing Document
type.tc_supplierInvoice=Invoice Document
type.tc_expenseReport=Expense Report Document

Metadata and the Alfresco Content Model

[154]

Then we need to wire this file into Spring so that it can be identified as a properties
file. We can do that by creating or extending an existing custom-slingshot-
application-context.xml file located in the tomcat\shared\classes\alfresco\
web-extension directory. This new file will reference the tcmodel.properties file:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN'
 'http://www.springframework.org/dtd/spring-beans.dtd'>

<beans>

 <bean id="webscripts.resources"
 class="org.springframework.extensions.surf.util.
 ResourceBundleBootstrapComponent">
 <property name="resourceBundles">
 <list>
 <value>webscripts.messages.webscripts</value>
 <value>alfresco.messages.common</value>
 <value>alfresco.messages.slingshot</value>
 <value>alfresco.web-extension.messages.tcmodel</value>
 </list>
 </property>
 </bean>

</beans>

After we add these files and restart the Alfresco server, we are then able to see the
changes. If we upload a file of type cm:content and apply the Change Type action,
we will see the following dialog that allows us to change the content type. When we
select a new type from the list, we will immediately see that the metadata properties
available for the document are updated to reflect the new properties available in the
type:

Seeing the new Type applied to a content node
Now that we have created the new content type and are able to assign the type
from the interface when new content is created, we can verify that the type
information is being correctly saved by using the Node Browser to look at the
information in the repository.

Chapter 4

[155]

You will recall that the Node Browser is a tool available in the Alfresco JSF Explorer
client from the Administration area of the client. If you bring up the Explorer client
and log in as the user admin and navigate to the Node Browser, you will be able to
navigate to a new content item that has the new content type.

One way to get a quick reference to the content item is to note that the node
reference is appended at the end of the Share URL when you view the details
page for the item.

In the Node Browser, we are able to see that the correct type has been applied. We
are able to see Properties from the new TC model, as well as Properties inherited
from the System and Standard Content models. We can also see all of the Aspects
that are currently applied to this node:

Metadata and the Alfresco Content Model

[156]

Customizing the forms for viewing and editing
the new model's metadata
You may have noticed that the forms for editing and viewing metadata for the
new document type are showing a lot of properties that most users would not be
interested in seeing. What's happening is that we have not yet configured a Share
property form to display the metadata for our new types, and by default, all the
properties for the type are being dumped into the edit and view property forms.

We can configure and customize the property forms so that they look a bit more
appealing, and also remove the properties that don't need to be seen by the end user.
Custom forms for Share are added to the share-config-custom.xml file. This file is
placed in the tomcat\shared\classes\alfresco\web-extension directory.

We will add three new <config> tag elements to this file. The first specifies that
we want to be able to include a CSS file to control the look of the form. We will call
that file typical.css and it is placed in the tomcat\webapps\share\custom\form
directory:

<!-- Typical company Creation Forms -->
<config>
 <forms>
 <dependencies>
 <css src="/custom/form/typical.css" />
 </dependencies>
 </forms>
</config>

Next, we include the configuration for the tc:supplierInvoice form. This form
will be used to display type properties for all nodes of this type, as determined by
the node-type evaluation. In a similar way, we also define a <config> element for
the type tc:expenseReport (not shown):

<config evaluator="node-type" condition="tc:supplierInvoice">
 <forms>
 <form>
 <edit-form template="/2-column-edit-form.ftl" />
 <field-visibility>
 <hide id="sys:node-uuid" />
 <hide id="sys:store-protocol" />
 <hide id="sys:store-identifier" />
 <hide id="sys:node-dbid" />
 <hide id="cm:created" />
 <hide id="cm:creator" />
 <hide id="cm:modified" />

Chapter 4

[157]

 <hide id="cm:modifier" />
 <hide id="cm:accessed" />
 <hide id="cm:contains" />
 <hide id="rma:identifier" />
 <hide id="rma:dbUniquenessId" />
 <show id="cm:name" />
 <show id="cm:title" force="true" />
 <show id="cm:description" force="true" />
 <show id="mimetype" for-mode="view" />
 <show id="cm:author" force="true" />
 <show id="tc:department" force="true" />
 <show id="tc:region" force="true" />
 <show id="tc:invVendor" />
 <show id="tc:invNumber" />
 <show id="tc:invAmount" />
 </field-visibility>

 <appearance>
 <set id="Invoice Documents"
 appearance="bordered-panel" label="Supplier Invoice" />
 <field id="tc:region">
 <control template="controls/selectone.ftl">
 <control-param name="options">North
 East,MidWest,South,South West,West,Europe,Asia,South
 America</control-param>
 </control>
 </field>
 <field id="tc:invVendor" set="Invoice Documents" />
 <field id="tc:invNumber" set="Invoice Documents" />
 <field id="tc:invAmount" set="Invoice Documents" />
 </appearance>
 </form>
 </forms>
</config>

In the form definition, we mark a number of properties as hidden within the
<field-visibility> element, and we explicitly mark properties that we want to be
visible, like the new tc:invVendor, tc:invNumber, and tc:invAmount properties.

We override the standard template used to display the properties when in edit
mode, specifying our own custom template file 2-column-edit-form.ftl. That
file is placed into the tomcat\shared\classes\alfresco\web-extension\site-
webscripts directory.

Metadata and the Alfresco Content Model

[158]

In the <appearance> section of the form definition, a bordered panel is defined by
the <set> element and the invoice-specific properties are then grouped into the
panel by referring to that element. The panel border will be visible on the default
view form, but it won't be displayed with the custom edit form template.

The property tc:region is displayed as a dropdown using the control template
called selectone. The elements for the dropdown are listed in the definition of the
selectone control.

The form template used here was adopted from the form example
available on the Alfresco wiki at http://wiki.alfresco.
com/wiki/Forms_Examples

This is the FreeMarker code that is used to define the form display template:

<#import "/org/alfresco/components/form/form.lib.ftl" as formLib />

<#if error?exists>
 <div class="error">${error}</div>
<#elseif form?exists>
 <#assign formId=args.htmlid + "-form">
 <#assign formUI><#if
 args.formUI??>${args.formUI}<#else>true</#if></#assign>
 <#if formUI == "true">
 <@formLib.renderFormsRuntime formId=formId />
 </#if>

 <div id="${formId}-container" class="form-container">
 <div class="logoimg"><img class="logoleft"
 src="/share/custom/form/images/typicallogo.png">Finance
 Document</div>
 <#if form.showCaption?exists && form.showCaption>
 <div id="${formId}-caption" class="caption freshstart">
 <span class="mandatory-
 indicator">*${msg("form.required.fields")}</div>
 </#if>
 <#if form.mode != "view">
 <form id="${formId}" method="${form.method}" accept-
 charset="utf-8" enctype="${form.enctype}"
 action="${form.submissionUrl}">
 </#if>

 <div id="${formId}-fields" class="form-fields">
 <#list form.structure as item>
 <#if item.kind == "set">
 <@renderSetWithColumns set=item />
 <#else>

Chapter 4

[159]

 <@formLib.renderField field=form.fields[item.id] />
 </#if>
 </#list>
 </div>

 <#if form.mode != "view">
 <@formLib.renderFormButtons formId=formId />
 </form>
 </#if>

 </div>
</#if>

<#macro renderSetWithColumns set>
 <#if set.appearance?exists>
 <#if set.appearance == "fieldset">
 <fieldset><legend>${set.label}</legend>
 <#elseif set.appearance == "panel">
 <div class="form-panel">
 <div class="form-panel-heading">${set.label}</div>
 <div class="form-panel-body">
 </#if>
 </#if>

 <#list set.children as item>
 <#if item.kind == "set">
 <@renderSetWithColumns set=item />
 <#else>
 <#if (item_index % 2) == 0>
 <div class="yui-g"><div class="yui-u first">
 <#else>
 <div class="yui-u">
 </#if>
 <@formLib.renderField field=form.fields[item.id] />
 </div>
 <#if ((item_index % 2) != 0) || !item_has_next></div></#if>
 </#if>
 </#list>

 <#if set.appearance?exists>
 <#if set.appearance == "fieldset">
 </fieldset>
 <#elseif set.appearance == "panel">
 </div>
 </div>
 </#if>
 </#if>
</#macro>

Metadata and the Alfresco Content Model

[160]

Now, on the details page for a document of type tc:supplierInvoice, we see a
form that looks as follows:

The edit form that uses the new custom template for the tc:supplierInvoice type
now looks like the following:

Chapter 4

[161]

The Records Management Content Model
At this point, we're fairly familiar with the Alfresco Content Model and we can now
apply that understanding by looking at the components of the Alfresco Records
Management model. The content model descriptor files for the Records Management
model can be found in the tomcat\webapps\alfresco\WEB-INF\classes\
alfresco\module\org_alfresco_module_dod5015\model directory. The content
model is broken into two models and two files, namely, recordsModel.xml and
dod5015Model.xml.

Metadata and the Alfresco Content Model

[162]

The Records Model
Let's look at the first file called recordsModel.xml. The relationships defined in that
model file can be illustrated in the UML format, as shown in the next diagram:

Now, let's look in detail at how the file recordsModel.xml is constructed and the
definitions that are in it.

The Records Model header
If we look at the top of the recordsModel.xml file, we can see the declaration of
the Records Model and some header information about the author and version:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Definition of Records Management Model -->

<!-- Note: the rma: namespace is defined further on in the document
 -->
<model name="rma:recordsmanagement"
 xmlns="http://www.alfresco.org/model/dictionary/1.0">

 <!-- Meta-data about the model -->
 <description>Records Management Model</description>
 <author>Roy Wetherall</author>
 <version>1.0</version>

The main thing to note in this code snippet is the definition of the model name,
rma:recordsmangement, called out as the name attribute in the <model> tag.

Chapter 4

[163]

The Records Model imports
The Records Management Content Model doesn't start from scratch. The elements
of this model are built using elements from content models that have already
been defined:

<!-- Imports are required to allow references to definitions in other
 models -->
 <imports>
 <!-- Import Alfresco Dictionary Model Definitions -->
 <import uri="http://www.alfresco.org/model/dictionary/1.0"
 prefix="d"/>
 <!-- Import Alfresco Content Domain Model Definitions -->
 <import uri="http://www.alfresco.org/model/content/1.0"
 prefix="cm"/>
 <!-- Import Alfresco System Model Definitions -->
 <import uri="http://www.alfresco.org/model/system/1.0"
 prefix="sys" />
 </imports>

This code imports existing foundation content models and defines the model prefixes
for creating short references to the elements of the imported models. The Dictionary,
Content Domain, and System models are imported, and those models are associated
with the prefixes d:, cm:, and sys:, respectively. Most new content models, as best
practice, start by importing these three foundation content models, although, in this
case, the System model is never directly referenced in the new model definition.

The Records Model namespace
Next, the name of the namespace to associate with the new Records Model is
defined. The short-name prefix, rma:, for the namespace is also defined:

 <!-- Records Management Namespace -->
 <namespaces>
 <namespace
 uri="http://www.alfresco.org/model/recordsmanagement/1.0"
 prefix="rma"/>
 </namespaces>

Some of the things that we don't find here are as interesting as the things that we
do find. For example, there is a definition of a Records Management container,
something that is essentially a folder with some additional aspects associated with it,
but we don't see anything specific for Record Series or Record Categories. Those will
be defined later in the dod content model.

Metadata and the Alfresco Content Model

[164]

The DoD 5015 Records Management Content
Model
We've just looked at the elements defined in the rma records content model. The
companion content model that Alfresco publishes alongside rma is the DoD 5015.2
Content Model or dod. The dod model builds on the elements defined in
rma and while the naming conventions within the rma model are fairly generic,
the names used within the dod model follow the terminology of DoD-style Records
Management as outlined in the DoD 5015.2 specification. We can see the elements
defined by the dod model and the relationships between them in the following
UML diagram:

Extending the Alfresco Content Model
We've just toured the Alfresco Records Management Content Model. There's a lot
there. Most likely you're impressed with what you've seen, but you are also probably
thinking that there are some things in the model that you'd like to change, or you
might have some ideas about properties that you think should be added to the
model.

Changing part of the standard Alfresco Content Model (like the built-in model for
Records Management) can be done, but should not be done lightly, especially if you
are making changes to an Alfresco production system where Records Management
is already in use.

Chapter 4

[165]

Unlike other parts of Alfresco, there isn't a mechanism for overriding standard
definitions of core content model files with your own files. For example, if you create
an override file by modifying one of the files of the standard content model and then
place your new file in the shared\alfresco\extension area, the new file will not
be picked up. To change the definitions found in the standard content model files,
you will need to directly make your changes to the core files.

One best practice with the Alfresco Content Model is that rather than
modifying the underlying types, whenever possible, you should create
types that extend from the core model.
In the case of Records Management there is some type-dependent
behavior wiring that happens in the Records Management application
that makes that difficult to do.
If you do need to add new properties, consider creating new aspects that
can hold those properties.

Making changes to core files means that you will need to remember that those
files must be modified every time there is an upgrade of your Alfresco system,
and because of that, you also need to be careful about what changes you make
in those files.

To be on the safe side, it is usually best to make only additions and minor changes
to standard models, like adding new properties or new associations. Removing
properties from the model on a system that has stored content may result in data
corruption, and if you remove a property that the application code references, you
will probably get errors and, most likely, the application will probably not function
correctly. Similar types of problems might occur if you try to change the names of
any of the properties.

Having said that though, if you have not yet deployed Records Management, it's
a good idea to review the Records Management model to make sure that you find
that the model is consistent with how you plan to manage your records. You need to
make sure that it is collecting the information that you need. If the model's not right,
despite the warnings above, the model probably needs to be changed. Waiting to
make changes to the model at some later point after you have already started to store
content will likely only lead to future headaches.

But again, changes should not be made without first giving a lot of careful thought to
all available options. Don't forget the power available by using aspects too. Aspects
can be applied on top of the base model and can help to extend it while avoiding
direct changes to it.

Metadata and the Alfresco Content Model

[166]

Also keep in mind that the Records Management Content Model relates only to the
structure of the File Plan and the lifecycle control of records. Metadata associated
with your document types are under your complete control and your documents
don't become records until they are appropriately filed in the File Plan and declared
as records.

At this point, you may see no need for making any changes to the Records
Management model. That might change after we go further in our discussion and get
more insight into how the Records Management system works. Later on, once we've
defined the File Plan and have identified the types of documents that we want to
manage, it might be a good idea to circle back and review the Records Management
model one more time.

Summary
In this chapter, we covered the following topics:

•	 The elements of the Alfresco Content Model
•	 How to create and install a new content model
•	 How to configure elements of the Share UI to be able to render metadata

for a content node
•	 What the structure of the internal Alfresco Records Management Content

Model looks like

At the end of this chapter, we also discussed the general philosophy about when to
alter elements of the standard Alfresco Content Model.

There was a lot of information covered in this chapter. But with this information, we
are now ready to continue in the design of our Records Management system. In the
next chapter, we will look at how to organize our documents and records within the
folder hierarchy known as the record File Plan.

Creating the File Plan
This chapter explains how the Records Management File Plan is constructed within
Alfresco. In the last chapter, we then saw how documents can be modeled as
document types within the Alfresco Content Model and can be configured to store
almost any kind of file content and metadata. This chapter focuses on the building of
a classification and organizational structure called the File Plan. It is within the File
Plan where we will store records.

In this chapter, we will describe:

•	 The benefits of having a well-designed File Plan
•	 How to design the best structure for the File Plan to meet the needs of

your organization
•	 How to create a File Plan within the Alfresco Share Records Management site

Alfresco Records Management is built based on the specification of the DoD 5015.2
File Plan. We will see how to create record Series, Categories, and Folders that are
compliant with that specification.

At the end of this chapter, in a "How does it work?" section, we will discuss from
a developer perspective some of the internals of how the File Plan page within the
Share Records Management site was built. We will see how the File Plan page gets
bound to the Records Management site, how the Spring-Surf framework is used to
lay out the page, and how the YUI client-side user interface library is used to both
render the page and to interact with the repository.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating the File Plan

[168]

The File Plan—a definition
The File Plan, also sometimes known as the "Records Classification Scheme", is
the basic structure in Records Management that classifies and groups records
together with similar characteristics. International standard ISO 15489 describes the
File Plan as an essential component of any Records Management program. Many
people consider the File Plan to be the crux of their entire Records Management
program. The File Plan classification system is similar to that of the folder or
directory structure in a filesystem. It is hierarchical, with the upper-most levels of
the hierarchy representing very broad categories and with the lower levels becoming
increasingly more specific. The File Plan structure provides a consistent scheme for
classifying records that can be applied to any type of record media or format.

Strictly speaking, there is more to the File Plan than just the
folder structure and the classification. The File Plan provides
a comprehensive outline that also includes instructions for file
retention and disposition. Transfer, retention, and disposition
are File Plan topics of discussion that we will discuss in the
next chapter.

Components of the File Plan
The DoD 5015.2 specification defines three tiers for the File Plan: Series, Category,
and Folder. Each of these elements is a container that functions in a way similar to a
standard filesystem folder, but that has some special restrictions and characteristics.

It's tempting to refer to all types of containers in the File Plan
as simply the "folders" for the File Plan, but doing so can
lead to ambiguity since containers at the third-level tier are
also called Folders.

Series are stored in the first tier or root-level of the File Plan. These kinds of
containers are restricted to hold only Category containers. No Folder containers,
records, or standard documents can be filed into a Series.

Categories are stored in the second tier of the File Plan hierarchy under Series.
Categories have a restriction similar to that of a Series in that only Folder containers
can be filed into them. Similar to Series, no records or documents can be filed
into them. A unique capability of Categories is that each one is associated with a
disposition schedule and retention rules that are inherited by all the Folders and
records that are filed under them.

Chapter 5

[169]

Folders are stored in the third tier of the File Plan under Categories. No other
container, whether it is Series, Category, or Folder, can be stored under a Folder.
Only records and non-declared records can be stored within a Folder.

The DoD 5015.2 specification describes only these three types of containers. The
specification is ambiguous about whether a Folder can contain another Folder. The
Alfresco implementation does not allow this. Many in the Records Management
community agree with this approach and advocate the use of shallow File Plan
hierarchies. Using three levels of containers is fairly standard. Allowing more nested
levels to exist under a Category than just Folders could complicate the management
of lifecycle rules:

The File Plan is a Records Management term that originated with
the management of paper and physical records. 'File' refers to paper
documents and 'Plan' refers to the strategy for classifying records.
Traditionally, with the management of paper records, documents or
files are stored as records in physical folders, that in turn are stored in
drawers, and the drawers in turn are part of a larger filing cabinet. In this
way, the three tiers of containers used for storing paper records based on
a File Plan are: filing cabinet, drawer, and folder.

Creating the File Plan

[170]

Benefits of the File Plan
Working on creating a File Plan that is a good match for the types of records
that you will be managing is well worth your time. The benefits of creating a
File Plan include:

•	 Allows staff members to consistently recall File Plan classifications
when filing and retrieving records

•	 Enables compliance with statutory and regulatory requirements
•	 Provides an audit trail for activities that have occurred in the organization
•	 Allows records to be disposed of when they are no longer needed

Looking at the Alfresco example File Plan
It is useful to look at the structure of the sample File Plan included with the Alfresco
Records Management module. This plan is a standard example and actually
corresponds to an example that comes along with the DoD 5015.2 specification.

We can install the sample File Plan by going to the Records Management console
on the administrator's Share top-level dashboard page. Once there, we can see the
option for installing the sample Records Management data. Let's click on that link to
start the install process. The install adds the sample File Plan to all other records or
containers that you may have already created yourself within the File Plan:

Clicking on the Load Test Data label runs an import of an ACP
file into the Alfresco repository. The ACP file with the sample File
Plan is located here: tomcat\webapps\alfresco\WEB-INF\
classes\alfresco\module\org_alfresco_module_dod5015\
bootstrap\DODExampleFilePlan.acp.

Chapter 5

[171]

After installing the test data set, we can navigate over to the Records Management
site and into the File Plan page. We can see that the test plan consists of four Series,
each containing a number of categories:

At this point, it is useful to gain some familiarity with how the File Plan works
within Alfresco by navigating through the File Plan structure via both the
navigation tree in the left panel and the main display area on the right.

When we are through looking at this sample File Plan and we no longer need it, it is
easy to remove it by navigating back to the top of the Plan, selecting all four of the
Series, and then choosing Delete from the Selected Items… menu.

Another sample File Plan is available as a data file that accompanies this
book. Unlike the example that ships with Alfresco that is based on the
DoD-5015.2, the structure of this example has much greater detail than the
one from the DoD, and it resembles more closely the File Plan of a typical
organization.
There are two files that make up the sample File Plan that can be
downloaded from Packt Publishing. The file FilePlan.xlsx is an Excel
spreadsheet and describes the File Plan. The file SampleFilePlan.
acp is a file in the ACP format that can be imported directly into
Alfresco using the Import button on the File Plan page of the Records
Management site.
A second ACP file, also named SampleFilePlan.acp, is available as a
downloadable file for Chapter 6. That version of the File Plan also includes
disposition schedules, as discussed in Chapter 6.

Creating the File Plan

[172]

Best practice for creating the File Plan
File Plan designs are usually created using one of two types of approaches, namely,
either the plan is architected to parallel the company's organizational chart or else
the structure calls out the functions and activities of the organization.

Organizations may already have File Plans being used for managing
non-electronic records. If so, that's good, but before deciding to adopt the
same plan, it should be reviewed to see if it adequately represents all the
record types that we plan to organize electronically.

File Plans based on organizational hierarchy
Designing the File Plan to parallel your company's organizational hierarchy has the
advantage of clearly identifying records with a business unit. This approach makes
it easy for individuals within the organization to know where to go within the File
Plan to file their records. While making the filing process easy is especially important
in organizations where record filing is decentralized, modeling the File Plan on the
organizational structure does have some problems and is generally not recommended.

For example, organizations tend to change frequently, and those changes will then
need to be updated in the File Plan. It may be necessary to have to even re-file or
move records into the folders of the new organization. If corresponding updates
aren't made to the plan after the organizational change, then the structure of the File
Plan will be out of date. This can become particularly exasperating to anyone not
familiar with the history of the organization. Ideally, the basic File Plan structure
should change very infrequently. That's the first problem with this approach.

Another problem with this approach is that it typically results in having records
cluster together that have different retention and disposition rules. It then becomes
difficult to apply record lifecycle instructions to many records at one time. Over the
long term, this approach can become very tedious.

One common mistake made when designing a File Plan is to create one
Folder for each employee. The employee then uses this folder to file their
e-mail and other electronic records. This type of filing structure, while
seemingly convenient, defeats the purpose of even having File Plan. It
makes the process of finding records difficult, and the task of assigning
lifecycle instructions to records almost impossible.

Chapter 5

[173]

File Plans based on business processes and
activities
An alternative approach for modeling the File Plan is to structure the plan based on
the processes, activities, and transactions that occur in the business. Designing the
File Plan in this way has a number of advantages, chief of which is the fact that doing
so will usually make it possible for similar types of records to cluster together.

Similar types of records will usually also share the same lifecycle instructions. For
example, records of the same type typically will also have similar rules for access and
security, rules for prioritizing storage, and rules for retention and disposition. While
there may be some exceptions, grouping similar records in this way simplifies the
overall records program administration.

Another technique for creating File Plans that can lead to trouble is to
name elements of the File Plan after the lengths of time for retention
periods. For example, naming folders "Two Year Retention", "Five Year
Retention", and "Fifteen Year Retention" will cause problems. With this
kind of structure, anyone outside of the Records Management office will
have a hard time knowing where to file records or where to start looking
for specific kinds of records. It can also complicate the task of freezing
records as part of a legal hold.

Best practice for File Plan design
We've just seen that one advantage of using a File Plan laid out to mirror the
organization chart for the business is that it makes it easier on infrequent users of
the records system to immediately know where they should go to file their records.
This is especially useful when filing responsibilities are decentralized to many users
across various business groups. The administration of the records program becomes
easier when records are grouped together by business activity and function.

A best practice frequently used when designing the File Plan is to blend the two
approaches.

For example, at the root level of the File Plan, Series can be created that correspond
to high-level business functions within the organization. While not always the case,
the File Plan root-level Series can usually be mapped to points that lie near the top
of the organizational structure. Series in an organization typically have names like
Administration, Human Resources, Legal, and Finance.

Creating the File Plan

[174]

At the second tier of the File Plan, the Category level names are usually best selected
by choosing the names of processes that are part of the business function that
the Series represents. For example, under the Series called Finance, there might
be Categories that include things such as Audits, Billings, Expense Reports, and
Supplier Invoices.

At the third tier of the File Plan, Folders are created that typically specify an entity
and/or time period that corresponds to the records that are to be filed. Folders
under the Category of Supplier Invoices, for example, could be named based on the
Supplier Name, like "ADD Solutions", "Zimmer Electronics", and so forth. Folders
under the Category of Expense Reports could be created based on the names of
employees, like "Jones, Harold".

Choosing the right naming convention for Folders may have a lot to do with how we
expect the records to cluster. Consider the Billings Category in the Finance Series.
Folders under Billings can be named after the entities that are billed, such as a name
of a company. But if there are many entities that will be billed, and the billings to
those entities are infrequent or one-time, then it may make sense to group them by
billing period rather than by entity names. In that case, Folders would be named by
date, such as "2011-03".

To summarize, a best practice approach for building a File Plan structure is to create
three tiers as follows:

•	 Business Function (Series)
•	 Process Name (Category)
•	 Transaction (Folder)

This approach for creating the structure of the File Plan is often readily understood
by infrequent Records Management users as to where they should look when they
need to file or retrieve records. This structure also tends to group records with
similar lifecycle instructions together.

Other types of rules, such as those around security and storage media, also need to
be applied to records. The groupings of records defined using this File Plan structure
typically work well for that too, but if the requirements get too granular, it may be
necessary to break up folders into multiple additional folders.

Creating the File Plan
Once the design for the File Plan is done, we are then ready to start implementing
the plan within Alfresco.

Chapter 5

[175]

Adding containers to the File Plan
Designing a good File Plan is really the hard part. Building out the structure within
the Alfresco File Plan area is straightforward, but may take a bit of time if our plan
has many folders. Let's walk through the steps on how to do that now.

Creating a Series
From the root level of the File Plan, we are able to create new Series. After
navigating to the root, we will see the option for adding a New Series across the
toolbar at the top left. Note that there are no other options available here for creating
other types of containers like Categories or Folders, nor is there an option to File
any records here. This is to be expected because the rules of the DoD 5015.2 File Plan
structure do not allow anything other than a Series to be created at the root of the
File Plan:

Note that while the File Plan in the Share Records Management site is
quite good at restricting users from creating container types or records
where they are not allowed, it is possible to bypass this guidance. For
example, Share site folders and files, including those of the Records
Management site can be browsed from the Repository option of Share or
by using the Alfresco JSF Explorer client. Adding, deleting, or changing
anything in the File Plan by using these tools bypasses the Records
Management interface and has the possibility of corrupting the data that
is stored in the File Plan.

Creating the File Plan

[176]

After clicking on the New Series button, we see a pop-up form that collects
information about the Name and Description of the Series that we will create.
Note that an asterisk marks fields that are mandatory. In this case, only the
Name field is mandatory:

After filling out the fields on this form, click on Submit, and the new Series container
will then appear at the root level of the File Plan. We can then navigate into the new
Series by clicking on it.

Creating a Category
From within the Marketing Series we just created, we are now ready to create a
new Category. Again, in the File Plan toolbar at the top of the page, we can see that
we now have the possibility of creating a New Category. We can also see in the
breadcrumb area on the second line of the toolbar, our current position within the
File Plan:

Chapter 5

[177]

In a similar way to the Series creation, we can create the new Category by clicking
on the New Category button. We then see the following pop-up form:

The Category creation form is similar to the form used for the creation of a Series.
The Name, Title, and Description are collected. In this case, both the Name and the
Description are mandatory. At the bottom of the form are fields for specifying if
this Category will be used to hold vital records and whether or not there is to be a
Review Period for the records stored under this Category.

Creating the File Plan

[178]

Vital records are records that contain information that can help an organization
reconstruct and continue operations after the event of a disaster. Typically about 3-5
percent of records in an organization are categorized as vital.

All vital records must be periodically reviewed to make sure that they are current
and still relevant. If the vital indicator is selected on the creation form, then it will
also be necessary to choose the Review Period that we would like to set for records
under this Category. It is also possible to set up a review period for records that are
not vital. In that case, entering a review period is optional.

There are two widgets on this form used to specify the frequency for the review.
The Review Period drop-down lets us select a unit for determining the period. The
period together with the field labeled Expression lets us specify a number of period
units. The default value for the number of periods is 1. For example, selecting "End
of Year" and 2, would mean that the Review period for records under this Category
would be at the end of every two years after the document was first declared a
record.

The disposition schedule is assigned to a Category. The disposition
schedule normally must be defined for the Category prior to creating any
Folders or records underneath it. The next chapter will discuss in more
detail the steps necessary for setting up the disposition schedule and
associating the schedule with the Category.

Creating a Folder
Next, after navigating into the newly created Category, we can see, on the toolbar,
that we now have an option to create a new Folder. Click on the New Folder link in
the upper-left of the toolbar:

Chapter 5

[179]

On the pop-up form, information to describe the name of the new Folder is specified.
The Name of the Folder is the only mandatory field that needs to be completed on
this form:

After submitting the form, the new Folder is created and is then shown within
the Category.

File Plan container metadata
Like any content within Alfresco, the File Plan containers, that is, the Series,
Categories, and Folders are associated with metadata. We saw when looking at the
Records Management Content Model that the content types for these containers
correspond to dod:recordSeries, dod:recordCategory, and rma:recordFolder.
All of these content types inherit from the base content type of cm:folder and they
also contain metadata specific to their function within the File Plan.

Creating the File Plan

[180]

Recall that we discussed metadata and document and record properties
in the context of the Content Model in the last chapter. Metadata is
structured data that describes other data. The metadata for a record tracks
information about its content, context, and lifecycle. Metadata is used to
help locate and manage records, and also to better understand the content
of records. Metadata can include information like the record name,
description, author, access permissions, and information about when the
record should be destroyed or transferred.

The configuration of the Content Model controls which metadata is stored with
each of the containers and which pieces of data are mandatory. As described in the
chapter on the Content Model, adding new metadata fields can be done easily, but
removing any existing fields should be avoided. Removing fields can cause existing
data to possibly become corrupted or for the software to fail because it expected
those fields that were deleted, to exist.

From the File Plan, the metadata for any container can be navigated to by selecting
the View Details actions for that container:

From the details page for the container, the Metadata corresponding to it is
displayed. From this screen, the metadata can't be edited. However, users with
sufficient permission to edit container metadata can do so from the Edit Metadata
pop-up dialog:

Chapter 5

[181]

Copy and move of File Plan containers
We need to remember that File Plan containers are similar to normal folders within
Share, but are subject to a few additional rules. For example, we've mentioned that
there are restrictions about where containers within the File Plan can be copied or
moved.

For example, there is no option to move a Series. A Series is already positioned at the
root level of the plan and is restricted from being placed under a Category or Folder.
A Series can be copied, but only as a Series with a different name under the File Plan
root.

Similarly, a Category can only be moved or copied to a position under a Series, and a
Folder can only be moved or copied to a position under a Category. Records can only
be moved or copied to positions within Folders:

Creating the File Plan

[182]

How does it work?
We have now seen how to set up and build the File Plan in Alfresco by nesting
the Series, Category, and Folder containers. The File Plan page in the Records
Management Share site is interesting to study in terms of understanding how it is
constructed. It provides an excellent example for how pages can be built using the
Spring-Surf web development framework.

How the File Plan page is set by the preset
As a first step, let's see how the File Plan page gets associated with the Records
Management site. The File Plan page is automatically configured as part of the
Records Management site when it is installed. But the File Plan page is a special
one that is not available to be added to the configuration of standard Share sites.

We saw earlier how the Share Records Management site dashboard was configured
with settings in the presets.xml file found in the tomcat\webapps\share\WEB-
INF\classes\alfresco\site-data\presets directory. The presets file also
defines the default configuration pages for the Records Management site.

The presets.xml configuration file defines a <preset> tag called rm-site-
dashboard that contains a single <pages> tag, that in turn defines a <page> called
"site/${siteid}/dashboard". Later on, we will see how the configuration data
defined here can be looked up to reference the page ID "site/rm/dashboard":

<page id="site/${siteid}/dashboard">
 <title>Records Management Site Dashboard</title>
 <title-id>page.rmSiteDashboard.title</title-id>
 <description>Records Management site's dashboard page</description>
 <description-id>page.rmSiteDashboard.description</description-id>
 <template-instance>dashboard-3-columns</template-instance>
 <authentication>user</authentication>
 <properties>
 <sitePages>[{"pageId":"documentlibrary"}, {"pageId":"rmsearch"}]
 </sitePages>
 <pageMetadata>
 {"documentlibrary":{"titleId":"page.rmDocumentLibrary.title",
 "descriptionId":"page.rmDocumentLibrary.description",
 "type":"dod5015"}}
 </pageMetadata>
 </properties>
</page>

Chapter 5

[183]

The <sitePages> tag defines the two pages that are associated by default with the
Records Management site: documentlibrary and rmsearch. The rmsearch page
is unique to the Records Management site and corresponds to the Records Search
page. The documentlibrary page is commonly used by other Share sites, but when
used on the Records Management site, it is called the File Plan page. It behaves quite
a bit differently than the standard Document Library page.

The File Plan extends from the standard Share Document Library pages, but the
behavior is quite different because standard behavior of the documentlibrary page
is overridden with new values that are defined in the <pageMetadata> tag for the
title, description, and type properties.

The titleId and descriptionId text strings referred to in the <pageMetadata> tag
are defined in the file dod5015.properties found in the tomcat\webapps\share\
WEB-INF\classes\alfresco\messages directory:

page.rmDocumentLibrary.title=File Plan
page.rmDocumentLibrary.description=Records Management File Plan with
Tree view

We see here that the normal label on the navigation bar of the Document Library
is overridden with the string File Plan and that the description string is similarly
overridden.

The File Plan, as extended from the Document
Library
Let's look in more detail at how the documentlibrary page behaves within the
Records Management site. To trace back the behavior of the Document Library, we'll
start by looking at the documentlibrary page definition file documentlibrary.xml
that is located in the tomcat\webapps\share\WEB-INF\classes\alfresco\site-
data\pages directory:

<?xml version='1.0' encoding='UTF-8'?>
<page>
 <title>Document Library</title>
 <title-id>page.documentLibrary.title</title-id>
 <description>Document library with Tree view</description>
 <description-id>page.documentLibrary.description</description-id>
 template-instance>documentlibrary</template-instance>
 <authentication>user</authentication>
</page>

Creating the File Plan

[184]

The <template-instance> for the page is similarly named documentlibrary.
We can then look up the template-instance file documentlibrary.xml in the
tomcat\webapps\share\WEB-INF\classes\alfresco\site-data\template-
instances directory:

<?xml version='1.0' encoding='UTF-8'?>
<template-instance>
 <template-type>org/alfresco/documentlibrary</template-type>
 <properties>
 <pageFamily>documentlibrary</pageFamily>
 <container>documentLibrary</container>
 </properties>
</template-instance>

Here we finally find out that the template is defined in the tomcat\webapps\share\
WEB-INF\classes\alfresco\templates\org\alfresco directory. When we look
in that directory, there are two files of interest there named documentlibrary.ftl
and documentlibrary.js.

The Document Library JavaScript controller
file
The JavaScript controller file documentlibrary.js calculates two properties
that are assigned to the model. One is called the doclibType, which is used to
distinguish the type of page to render, the standard Document Library, or the
File Plan. The other is the rootNode, that is, a string containing the root path in
the Alfresco repository.

The following three functions are at the top of the file documentlibrary.js and
we will have a look at them shortly:

function toRepoType(appType){}
function fromRepoType(repoType){}
function getLocationType(){}

The main code of the controller file is at the bottom of the file:

var objLocation = getLocationType(),
 doclibType = fromRepoType(objLocation.containerType),
 scopeType = objLocation.siteId !== null ? "" : "repo-";

model.doclibType = doclibType == "" ? scopeType : doclibType + "-";

var rootNode = "alfresco://company/home",
 repoConfig = config.scoped["RepositoryLibrary"]["root-node"];
if (repoConfig !== null)

Chapter 5

[185]

{
 rootNode = repoConfig.value;
}

model.rootNode = rootNode;

There isn't that much code here, but let's walk through it to understand what is
happening in the controller. The controller, as we recall, sets the parameters in
the model that will later be available for use by the FreeMarker template when
constructing the page presentation.

Getting the Location Type
First, the variable objLocation is set by calling the getLocationType() function
defined near the top of the documentlibrary.js file. The results of this function
distinguish whether we are dealing with the File Plan or with the standard
Document Library page. Let's step into that function now:

function getLocationType()
{
 // Need to know what type of node the container is
 var siteId = page.url.templateArgs.site,
 containerId = template.properties.container,
 containerType = "cm:folder",
 appType = "";

 if (siteId !== null)
 {
 var p = sitedata.getPage("site/" + siteId + "/dashboard");
 if (p != null)
 {
 pageMetadata = eval('(' + p.properties.pageMetadata + ')');
 pageMetadata = pageMetadata != null ? pageMetadata : {};
 doclibMeta = pageMetadata[page.id] || {};
 if (doclibMeta.titleId != null)
 {
 // Save the overridden page title into the request context
 context.setValue("page-titleId", doclibMeta.titleId);
 }
 appType = doclibMeta.type;
 }

 var connector = remote.connect("alfresco");
 result = connector.get("/slingshot/doclib/container/" +
 siteId + "/" + containerId + "?type=" + toRepoType(appType));
 if (result.status == 200)
 {

Creating the File Plan

[186]

 var data = eval('(' + result + ')');
 containerType = data.container.type;
 }
 }

 return (
 {
 siteId: siteId,
 containerType: containerType
 });
}

The function getLocationType() first retrieves the page object definition for the
Records Management dashboard in the variable p by looking up the page associated
with "site/rm/dashboard". It looks this information up from the sitedata root-
scoped object that contains the page data from the presets.xml file definition that
we saw earlier. The presets.xml configuration file information is then stored into
the page object.

From the page object, we can extract the parameters specific to the page that we are
currently on, that is, the documentLibrary page. The name of the current page is
stored in page.id. docLibMeta contains the override information that was specified
in the presets.xml file <pageMetadata>. From it, we can retrieve, set, and override
the value for the title and also set the variable appType to dod5015.

Getting the File Plan root node via a service call
At the end of getLocationType(), a remote service call is made to the Alfresco
repository to determine the container type and the top root-level node reference for
the document library. All top level folders in the File Plan will be children of this
node. In this case, the service URL looks like:

http://localhost:8080/alfresco/service/slingshot/doclib/container/rm/
documentLibrary?type=dod:filePlan

The request returns information in the form of the following code:

{
 "container":
 {
 "nodeRef": "workspace://SpacesStore/98c5a184-9901-4b7c-9e16-
 91522f2ccb2a",
 "type": "dod:filePlan"
 }
}

Chapter 5

[187]

We can validate the information returned by the service by looking up the reference
of the node returned in the JSF Explorer client Node Browser tool. By doing that, we
can see that the node returned is indeed of type dod:filePlan. Finally, the function
getLocationType() returns this value as the type and the siteId "rm":

Setting doclibType in the model data
Now let's return to the controller code at the bottom of the file documentlibrary.js.
We see that the doclibType prefix will be set to dod5015-. This prefix is later used to
distinguish between the File Plan and Document Library pages when rendering the
page in the FreeMarker template. Normally, the prefix is repo- that corresponds to
the standard Document Library page:

var objLocation = getLocationType(),
 doclibType = fromRepoType(objLocation.containerType),
 scopeType = objLocation.siteId !== null ? "" : "repo-";

model.doclibType = doclibType == "" ? scopeType : doclibType + "-";

Setting the root node in the model data
Next, the value for the root node is set in the model. The value for the root node
is initialized either in the standard tomcat\webapps\share\WEB-INF\classes\
alfresco\share-config.xml file or in the tomcat\shared\classes\alfresco\
web-extension\share-config-custom.xml extension override file. The root node
is initialized with code similar to the following:

<config evaluator="string-compare" condition="RepositoryLibrary">
…
 <!-- Root nodeRef for top-level folder. -->
 <root-node>alfresco://company/home</root-node>
…
</config>

Creating the File Plan

[188]

The JavaScript controller code looks like the following snippet of code. The
configuration for the root-node in the RepositoryLibrary is returned via the
scoped config variable. The value defaults to alfresco://company/home. This is
the path in the Alfresco repository under which content will be stored:

// Repository Library root node
var rootNode = "alfresco://company/home",
 repoConfig = config.scoped["RepositoryLibrary"]["root-node"];
if (repoConfig !== null)
{
 rootNode = repoConfig.value;
}

model.rootNode = rootNode;

Reading XML configuration data
We have just seen how we can access Share configuration file information that is
defined in JavaScript XML files from server-side JavaScript. The XML configuration
information stored in any of the following files is available for access from both the
JavaScript controller and FreeMarker template files:

•	 tomcat\shared\classes\alfresco\web-extension\share-config-
custom.xml

•	 tomcat\webapps\share\WEB-INF\classes\alfresco\share-config.xml

•	 tomcat\shared\classes\alfresco\web-extension\webscript-
framework-config-custom.xml

<config> tags in these files are called "scoped configs" if the element contains
an evaluator attribute (something like <config evaluator="string-compare"
condition="DocumentLibrary">). In the case where there is no evaluator, the
tag is referred to as a "global config".

For example, the following section of the share-config-custom.xml file shows
the configuration for a global config:

<config replace="true">
 <flags>
 <client-debug>true</client-debug>
 <client-debug-autologging>false</client-debug-autologging>
 </flags>
</config>

Chapter 5

[189]

The global config value for the flag client-debug can then be accessed in JavaScript
in the following way:

config.global.flags.getChildren("client-debug").get(0).value

Global and scoped config information is also accessible from FreeMarker
templates using a similar syntax. There is a more detailed explanation on
the Alfresco wiki: http://wiki.alfresco.com/wiki/Web_Scripts

The information from scoped configs can be accessed in a similar way. Consider the
following code from the share-config-custom.xml file:

<config evaluator="string-compare" condition="DocumentLibrary"
 replace="true">
 <aspects>
 <!-- Aspects that a user can see -->
 <visible>
 <aspect name="cm:generalclassifiable" />
 <aspect name="cm:complianceable" />
 <aspect name="cm:dublincore" />
 <aspect name="cm:effectivity" />
 <aspect name="cm:summarizable" />
 <aspect name="cm:versionable" />
 <aspect name="cm:templatable" />
 <aspect name="cm:emailed" />
 <aspect name="emailserver:aliasable" />
 <aspect name="cm:taggable" />
 <aspect name="app:inlineeditable" />
 </visible>
 </aspects>
 <types>
 <type name="cm:content"></type>
 <type name="cm:folder"></type>
 </types>
</config>

The following JavaScript code will count and return the number of <aspect> tags
as 11:

config.scoped["DocumentLibrary"]["aspects"].childrenMap["visible"].
 get(0).childrenMap["aspect"].size()

Creating the File Plan

[190]

Values for the names of the aspects can be found as shown next. This example
returns the string value for the name attribute of the first aspect in the list as
cm:generalclassifiable:

config.scoped["DocumentLibrary"]["aspects"].childrenMap["visible"].
 get(0).childrenMap["aspect"].get(0).attributes["name"].toString()

Inner-element data can be returned by using value, as shown in the next example
that uses the SitePages list defined in the share-config.xml file:

<config evaluator="string-compare" condition="SitePages">
 <pages>
 <page id="calendar">calendar</page>
 <page id="wiki-page">wiki-page?title=Main_Page</page>
 <page id="documentlibrary">documentlibrary</page>
 <page id="discussions-topiclist">discussions-topiclist</page>
 <page id="blog-postlist">blog-postlist</page>
 <page id="links">links</page>
 <page id="data-lists">data-lists</page>
 </pages>
</config>

The following JavaScript will return the inner-element value of calendar for the
first <page> tag:

config.scoped["SitePages"]["pages"].childrenMap["page"].get(0).value

The value of calendar for the id attribute of the first <page> tag is returned with
the following code:

config.scoped["SitePages"]["pages"].childrenMap["page"].get(0).
 attributes["id"].toString()

An alternative and perhaps less complex way to process and traverse the
XML structure of the global and scoped config information is to use E4X,
which is a JavaScript XML API. More information can be found about E4X
at https://developer.mozilla.org/En/E4X/Processing_XML_
with_E4X.

Chapter 5

[191]

The Document Library FreeMarker
presentation
We continue now to see how the File Plan page of the Records Management
site in Share is rendered. We have seen above that the JavaScript controller file
documentlibrary.js populates values of the model. The values in the model are
then passed to the FreeMarker template file documentlibrary.ftl that controls the
layout and ultimate display of the File Plan page.

FreeMarker page layout for the File Plan
Code from the FreeMarker layout file documentlibrary.ftl is shown below. This
file defines a basic skeleton description of the overall structure and layout of the
page. The design is such that components are plugged into the page layout with
the real work for rendering of the page being deferred to each of the individual
components that are referenced on it.

What is important to note here is the <@region> tags in the code. Each of these tags
maps to a template instance file that in turn corresponds to a Surf component that
will ultimately be displayed in that position on the page:

<@templateBody>
 <div id="alf-hd">
 <@region id="header" scope="global" protected=true />
 <@region id="title" scope="template" protected=true />
 <@region id="navigation" scope="template" protected=true />
 </div>
 <div id="bd">
 <@region id=doclibType + "actions-common" scope="template"
 protected=true />
 <div class="yui-t1">
 <div id="yui-main">
 <div class="yui-b" id="divDocLibraryDocs">
 <@region id=doclibType + "toolbar" scope="template"
 protected=true />
 <@region id=doclibType + "documentlist" scope="template"
 protected=true />
 </div>
 </div>
 <div class="yui-b" id="divDocLibraryFilters">
 <@region id=doclibType + "filter" scope="template"
 protected=true />
 <@region id=doclibType + "tree" scope="template"
 protected=true />

Creating the File Plan

[192]

 <@region id=doclibType + "tags" scope="template"
 protected=true />
 <@region id=doclibType + "fileplan" scope="template"
 protected=true />
 <@region id=doclibType + "savedsearch" scope="template"
 protected=true />
 </div>
 </div>
 <@region id=doclibType + "html-upload" scope="template"
 protected=true />
 <@region id=doclibType + "flash-upload" scope="template"
 protected=true />
 <@region id=doclibType + "file-upload" scope="template"
 protected=true />
 </div>
</@>

<@templateFooter>
 <div id="alf-ft">
 <@region id="footer" scope="global" protected=true />
 </div>
</@>

Alfresco page components
From the region id and the scope for the <@region> tag of an Alfresco page template,
the name for the corresponding component descriptor filename can be constructed.

The naming convention for a component descriptor filename is:
 <scope>.<regionid>.<page>.xml.
<scope> corresponds to global, template, or page. When the
<scope> is global, the <page> component of the file name is dropped.

Component descriptor files can be found in the tomcat\webapps\share\WEB-INF\
classes\alfresco\site-data\components directory.

The XML of each component descriptor file contains a <url> tag that uniquely
identifies the webscript files needed to render the component. There's a sure-fire way
to find the exact location of the webscript files that we describe below, but most of
the components that we will be looking at can be found under the directory tomcat\
webapps\share\WEB-INF\classes\alfresco\site-webscripts\org\alfresco\
components. The relative path under this directory often matches the path of the
<url> in the component descriptor. An exact match is made when the <url> value
for the component descriptor matches the <url> value in the webscript file.

Chapter 5

[193]

For example, consider the component descriptor file global.header.xml. We see
that the <url> in this file is defined to be /components/header. The contents of that
file are as follows:

<?xml version='1.0' encoding='UTF-8'?>
<component>
 <scope>global</scope>
 <region-id>header</region-id>
 <source-id>global</source-id>
 <url>/components/header</url>
</component>

The URL also gives us a good clue as to where to find the corresponding webscript
files for the component. If we look in the directory tomcat\webapps\share\WEB-
INF\classes\alfresco\site-webscripts\org\alfresco\components\header,
we can find the file header.get.desc.xml. That file contains the matching webscript
<url> tag value of /components/header that we are looking for:

<webscript>
 <shortname>Global Header Component</shortname>
 <description>Header component used across the whole
 application</description>
 <url>/components/header</url>
</webscript>

In that same webscripts directory, we find the following other files needed for
rendering the header component:

Webscript component file Description
header.get.desc.xml The descriptor file for the component.
header.get.head.ftl Markup to support the rendering of the component that

will be included in the page <head> tag, such as the
import of a JavaScript file or the link to a CSS page.

header.get.html.ftl The actual FreeMarker markup for the component.
header.get.js The JavaScript controller file to calculate information to

be displayed in the FreeMarker template.
header.get.properties The properties file with the definition of text for labels.

The surest way to identify the location of a component webscript is to use
the webscripts browser page in Share. The URL for that page is http://
localhost:8080/share/service/index. To access this page, we will need to
have Share administrator privileges. From this page, we can click on the Browse by
Web Script URI link, and from there, navigate to find where the webscript files are
actually stored:

Creating the File Plan

[194]

Components on the File Plan page
Now that we know how to locate the components and rendering webscripts for
a page, we can map the components identified by the <@region> tag on the page
template to the components that will then be rendered at those page positions.

The file documentlibrary.ftl is written to support both the standard Share site
Document Library and the Records Management site File Plan pages. We've seen
above that the JavaScript controller has calculated and populated a value for the
doclibType variable in the model.

Chapter 5

[195]

The string value for doclibType will be "repo-" when documentlibrary.ftl is used
to render the Document Library page, but it will have the string value of "dod5015-"
when the File Plan page is being rendered. The doclibType string is used to build
the name for many of the <@region> tag ids with logic like the following:

id=doclibType + "toolbar"

In the File Plan case, for example, this would resolve to the ID of "dod5015-toolbar".
In the Document Library case, this simply resolves to "toolbar". In this way, it is
possible to specify which component to use, based on the page rendering type.

The next table shows the mapping from the <@region> tags for the File Plan page, to
their component descriptor files, and then to the url that identifies the components:

Region id and scope Component descriptor file URL
id="header"
scope="global"

global.header.xml /components/header

id="title"
scope="template"

template.title.
documentlibrary.xml

/components/title/
collaboration-title

id="navigation"
scope="template"

template.navigation.
documentlibrary.xml

/components/navigation/
collaboration-
navigation

id="dod5015-
actions-common"
scope="template"

template.dod5015-
actions-common.
documentlibrary.xml

/components/
documentlibrary/
dod5015/actions-common

id="dod5015-
toolbar"
scope="template"

template.
dod5015-toolbar.
documentlibrary.xml

/components/
documentlibrary/
dod5015/toolbar

id="dod5015-
documentlist"
scope="template"

template.dod5015-
documentlist.
documentlibrary.xml

/components/
documentlibrary/
dod5015/documentlist

id="dod5015-
filter"
scope="template"

N/A

Does not exist.

N/A

Does not exist.

id="dod5015-tree"
scope="template"

template.dod5015-tree.
documentlibrary.xml

/components/
documentlibrary/
dod5015/tree

id="dod5015-tags"
scope="template"

N/A

Does not exist.

N/A

Does not exist.
id="dod5015-
fileplan"
scope="template"

template.
dod5015-fileplan.
documentlibrary.xml

/components/
documentlibrary/
dod5015/fileplan

Creating the File Plan

[196]

Region id and scope Component descriptor file URL
id="dod5015-
savedsearch"
scope="template"

template.dod5015-
savedsearch.
documentlibrary.xml

/components/
documentlibrary/
dod5015/savedsearch

id="dod5015-
html-upload"
scope="template"

template.dod5015-
html-upload.
documentlibrary.xml

/components/upload/
dod5015/html-upload

id="dod5015-
flash-upload"
scope="template"

template.dod5015-
flash-upload.
documentlibrary.xml

/components/upload/
dod5015/flash-upload

id="dod5015-
file-upload"
scope="template"

template.dod5015-
file-upload.
documentlibrary.xml

/components/upload/
dod5015/file-upload

id="footer"
scope="global"

global.footer.xml /components/footer

The next figure shows visually where the components for the regions will display on
the File Plan page. Some of the regions that are defined are for pop-up dialogs, such
as the dialog for uploading a file to the repository:

Chapter 5

[197]

The File Plan Document List
Of the components and regions on the File Plan page, of particular interest is the one
called dod5015-documentlist. This component fills the largest panel of the screen
and is the one that typically receives the main attention from the user of the page.

As we just saw, the webscript that renders this component consists of files with
names of the form dod5015-documentlist.get.*. Let's take a look at some of
these files to see how the Document List works.

The Document List controller file
The JavaScript controller file for the Document List webscript is dod5015-
documentlist.get.js. The purpose of the controller file is to populate the
model for the presentation. The controller file for the Document List is fairly
straightforward. It calculates and returns the array of user preferences and an
array of available actions.

User preferences
The JavaScript code in the controller file dod5015-documentlist.get.js first tries
to calculate user preferences. The part of the code that does that is as follows:

const PREFERENCES_ROOT = "org.alfresco.share.documentList";

var result = remote.call("/api/people/" +
 stringUtils.urlEncode(user.name) + "/preferences?pf=" +
 PREFERENCES_ROOT);
 if (result.status == 200 && result != "{}")
 {
 var prefs = eval('(' + result + ')');
 try
 {
 // Populate the preferences object literal for easy look-up
 later
 preferences = eval('(prefs.' + PREFERENCES_ROOT + ')');
 if (typeof preferences != "object")
 {
 preferences = {};
 }
 }
 catch (e)
 {
 }
 }

Creating the File Plan

[198]

A remote call is made here to the Alfresco repository API, specifically for retrieving
information about people. The API call will hit the Alfresco Preferences Service.
When logged in as user admin, the service address called resolves to the following:

remote.call ("/api/people/admin/preferences?pf=org.alfresco.share.
documentList");

This will call the following URL:

http://localhost:8080/alfresco/service/api/people/admin/
preferences?pf=org.alfresco.share.documentList

The result of making this call is a response that looks like this:

{"org":{"alfresco":{"share":{"documentList":{"showFolders":true}}}}}

The only preference being stored in the result of this example for user admin is the
flag showFolders with the value of true.

More information about the REST Alfresco API services can be found
on the Alfresco wiki at http://wiki.alfresco.com/wiki/3.0_
REST_API#Preferences_Service.

The call to the Preference Service via the API retrieves information that has been
cached about the user in the Alfresco repository. Preference information is stored in
the cm:preferenceValues attribute associated with the cm:preferences aspect that
is applied to a node of type cm:person.

Using the Node Browser administration tool, we can find exactly where in the
repository the preference information is stored. In this case, it is stored as an
attribute for a node in the repository store called workspace://SpacesStore
with a path of /sys:system/sys:people/cm:admin.

The value assigned to cm:preferenceValues refers to content stored on disk that
contains the preference information:

Just out of curiosity, we can find and then look and see the text contents of that file:

{"org.alfresco.share.documentList.showFolders":true}

Chapter 5

[199]

Actions
The other calculation made in the JavaScript controller file dod5015-documentlist.
get.js is to find the available actions for the Document List:

var prefActionSet, order, actionSet, actionSetId, actionId,
 defaultOrder;
var myConfig = new XML(config.script),
 prefActions = preferences.actions || {};

for each (var xmlActionSet in myConfig..actionSet)
{
 actionSet = [];
 actionSetId = xmlActionSet.@id.toString();
 prefActionSet = prefActions[actionSetId] || {};
 defaultOrder = 100;

 for each (var xmlAction in xmlActionSet..action)
 {
 defaultOrder++;
 actionId = xmlAction.@id.toString();

 actionSet.push(
 {
 order: prefActionSet[actionId] || defaultOrder,
 id: actionId,
 type: xmlAction.@type.toString(),
 permission: xmlAction.@permission.toString(),
 href: xmlAction.@href.toString(),
 label: xmlAction.@label.toString()
 });
 }
 actionSets[actionSetId] = actionSet.sort(sortByOrder);
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating the File Plan

[200]

One interesting thing that is happening in this script is the use of the config
variable. We saw earlier in this chapter how we can use config to access scoped
information stored in XML configuration files. In this script, the reference config.
script retrieves the XML stored in the companion webscript file dod5015-
documentlist.get.config.xml:

The XML data in that file is formatted as follows:

<documentList>
 <actionSets>
 <actionSet id="empty"></actionSet>

 <actionSet id="recordSeries">
 <action type="simple-link" id="onActionViewDetails"
 href="{recordSeriesDetailsUrl}" label="actions.view-details"
 />
 <action type="simple-link" id="onActionEditDetails"
 permission="UpdateProperties" href="{editMetadataUrl}"
 label="actions.edit-details" />
 ...
 </actionSet>

 <actionSet id="recordCategory">
 <action type="simple-link" id="onActionViewDetails"
 href="{recordCategoryDetailsUrl}" label="actions.view-
 details" />
 <action type="simple-link" id="onActionEditDetails"
 permission="UpdateProperties" href="{editMetadataUrl}"
 label="actions.edit-details" />
 ...
 </actionSet>
 ...

 </actionSets>
</documentList>

Chapter 5

[201]

After loading the XML, an array of actionSets are constructed that manage the
list of available actions for each type of repository object. Depending on the type of
object selected in the data grid, subject to the permissions that the user has, this is the
list of actions that will become available. The action list for a Series container in the
File Plan looks something like the following. Here, the actions are View Details, Edit
Metadata, Manage Permissions, and so forth:

The Document List Data Table
The Document List displays all the items that are in the container corresponding to
the current position in the File Plan. We've seen how the server-side Surf framework
is used to define the layout of the File Plan page. The actual display of the items in
the Document List is handled on the client using JavaScript and AJAX.

Defining and rendering the Data Table
The webscript file, dod5015-documentlist.get.head.ftl, identifies files that
will be imported into the <head> section of the File Plan page. Two JavaScript files,
documentlist.js and dod5015-documentlist.js, are specified for import with
this file:

<#include "../component.head.inc">
<!-- DoD 5015.2 Document List -->
<@link rel="stylesheet" type="text/css"
 href="${page.url.context}/components/documentlibrary/
 documentlist.css" />
<@link rel="stylesheet" type="text/css"
 href="${page.url.context}/components/documentlibrary/dod5015-
 documentlist.css" />
<@script type="text/javascript"
 src="${page.url.context}/components/documentlibrary/

Creating the File Plan

[202]

 documentlist.js"></@script>
<@script type="text/javascript"
 src="${page.url.context}/components/documentlibrary/dod5015-
 documentlist.js"></@script>

The first of these files, documentlibrary.js, is a Share file used in the display
of the Document Library page for standard Share sites. It defines the Alfresco.
DocumentList class. The second file, dod5015-documentlist.js, overrides some of
the methods of the first file which is the superclass. The method overrides features
that are specific for Records Management functionality. The class defined in this
second file is Alfresco.RecordsDocumentList. The RecordsDocumentList class is
the one that is instantiated for use on the File Plan page.

Share uses the YUI library, which provides the framework for the client-side user
interface. These two JavaScript files make extensive use of YUI event handling
and the YUI Data Table widget. In total, these two files are several thousand lines
of code long, and because of their length, we will only be able to touch on a few
highlights from each of them.

The DocumentList superclass defines a method called onReady that is implemented
as the function DL_onReady(). This method is fairly long and isn't shown here.
Among other things, it initializes the widgets needed for the document list and sets
up a number of event handlers. Among the various things that are initialized in that
function is a call to the method _setupDataTable() to initialize the YUI Data Table
to display the items in the repository:

_setupDataTable: function DL__setupDataTable()
{
 var me = this;

 // DataTable column defintions
 var columnDefinitions =
 [
 { key: "nodeRef", label: "Select", sortable: false, formatter:
 this.fnRenderCellSelected(), width: 16 },
 { key: "status", label: "Status", sortable: false, formatter:
 this.fnRenderCellStatus(), width: 16 },
 { key: "thumbnail", label: "Preview", sortable: false, formatter:
 this.fnRenderCellThumbnail(), width: 100 },
 { key: "fileName", label: "Description", sortable: false,
 formatter: this.fnRenderCellDescription() },
 { key: "actions", label: "Actions", sortable: false, formatter:
 this.fnRenderCellActions(), width: 200 }
];

 // DataTable definition

Chapter 5

[203]

 this.widgets.dataTable = new YAHOO.widget.DataTable(this.id + "-
 documents", columnDefinitions, this.widgets.dataSource,
 {
 renderLoopSize: this.options.usePagination ? 16 : 32,
 initialLoad: false,
 dynamicData: true,
 MSG_EMPTY: this.msg("message.loading")
 });

The columnDefinitions variable in the method _setupDataTable()defines the cells
for each row of the data table. This method sets the width and formatting method for
rendering the cell of each row in the table:

Cell label Format function
Select fnRenderCellSelected()

Status fnRenderCellStatus()

Preview fnRenderCellThumbnail()

Description fnRenderCellDescription()

Actions fnRenderCellActions()

The columnDefinitions is then used as an input parameter to create a new
YUI Data Table for rendering on the page. The other important parameter used
in creating the Data Table is the Data Source. The data source is based on an
Alfresco repository service called doclist, which returns the row values for
display on this page.

The dod5015-documentlist.js file defines the data source, as seen in the following
code:

_setupDataSource: function DL__setupDataSource()
{
 var me = this;

 // DataSource definition
 this.widgets.dataSource = new
 YAHOO.util.DataSource(Alfresco.constants.PROXY_URI +

Creating the File Plan

[204]

 "slingshot/doclib/dod5015/doclist/");
 this.widgets.dataSource.responseType =
 YAHOO.util.DataSource.TYPE_JSON;
 this.widgets.dataSource.responseSchema =
 {
 resultsList: "items",
 fields:
 [
 "index", "nodeRef", "type", "isFolder", "mimetype", "fileName",
 "displayName", "status", "title", "description", "author",
 "createdOn", "createdBy", "createdByUser", "modifiedOn",
 "modifiedBy", "modifiedByUser", "size", "version",
 "contentUrl", "actionSet", "tags",
 "location", "permissions", "dod5015"
],
 metaFields:
 {
 paginationRecordOffset: "startIndex",
 totalRecords: "totalRecords"
 }
 };
…

This method specifies a data source that will be connected to a repository web
service. It specifies the fields or properties that should be returned for each row in
the result. The base URL for the web service is defined as: Alfresco.constants.
PROXY_URI + "slingshot/doclib/dod5015/doclist/", which will typically resolve
to look something like: http://localhost:8080/alfresco/service/slingshot/
doclib/dod5015/doclist.

The method called _buildDocListParams near the bottom of documentlist.js
builds a parameter string that is appended to the base data source URL to further
qualify what type of results are needed to be returned. For example, the data source
might call something similar to the following URL to find all the Category containers
under a Series container named "Health and Safety":

http://localhost:8080/alfresco/service/slingshot/doclib/dod5015/
doclist/all/site/rm/documentLibrary/Health%20and%20Safety?filter=p
ath&noCache=1282251487169

The result of this URL is a JSON data packet that contains a list of all of the Category
containers and the properties associated with each one of them. The data associated
with each result row is then made available to each of the cell formatting functions
that we saw above and are used for rendering the types of cells in the Data Table.

Chapter 5

[205]

Retrieving Content Object with an Alfresco Repository
webscript
We've just seen how the File Plan page is filled with a list of repository object
data. The repository service that is being called to populate the Data Table of the
Document List is an Alfresco repository webscript. The files defining this repository
webscript can be found here: tomcat\webapps\alfresco\WEB-INF\classes\
alfresco\templates\webscripts\org\alfresco\slingshot\documentlibrary\
dod5015-doclist*.

The webscript descriptor file, dod5015-doclist.get.desc.xml, identifies the URL
formats that the doclist webscript responds to. In this file, we see that there are
multiple URL formats that this script will respond to. The format that we matched
with the URL of the last example is: slingshot/doclib/dod5015/doclist/{type}/
site/{site}/{container}/{path}.

The URL that we used contained slingshot/doclib/dod5015/doclist/all/site/
rm/documentLibrary/Health%20and%20Safety.

<webscript>
 <shortname>doclist</shortname>
 <description>Document List Component - dod5015 doclist data
 webscript</description>
 <url>/slingshot/doclib/dod5015/doclist/{type}/site/{site}/
{container}
 /{path}</url>
 <url>/slingshot/doclib/dod5015/doclist/{type}/site/{site}/
{container}
</url>
 <url>/slingshot/doclib/dod5015/doclist/{type}/node/{store_type}/
 {store_id}/{id}/{path}</url>
 <url>/slingshot/doclib/dod5015/doclist/{type}/node/{store_type}/
 {store_id}/{id}</url>
 <format default="json">argument</format>
 <authentication>user</authentication>
 <transaction allow="readwrite"
 buffersize="0">required</transaction>
</webscript>

Creating the File Plan

[206]

Summary
In this chapter, we covered the following topics:

•	 What a File Plan is and the File Plan structure recommended by the
DoD 5015.2 specification

•	 What is the best practice approach for specifying a File Plan
•	 How to create the Series, Category, and Folder containers of the File Plan

At the end of this chapter, we included a detailed discussion about how the File Plan
in the Records Management site was implemented as an extension of the standard
Alfresco Share Document Library. We saw how the File Plan page is configured
to be available in the Records Management site via the presets.xml file. We also
saw some of the internals for how the File Plan page was built using Spring-Surf
webscripts and the YUI client-side library for building rich application interfaces.

One part of the File Plan skipped over in the discussion in this chapter was the
creation of the Disposition schedule that is associated with File Plan categories.
The Disposition schedule defines lifecycle instructions for the records within a
Category. This is an important part of the File Plan and one that deserves a detailed
explanation. That is why we have dedicated the whole of the next chapter to an
explanation of the File Plan disposition schedule.

Creating Disposition
Schedules

In the last chapter, we designed the overall structure of the File Plan. An important
part of the File Plan is the disposition schedule, which includes information about
how long records will be retained. In this chapter, we will look in detail at the
meaning of the disposition schedule and we will see how to configure it within
Alfresco. Specifically, we will describe:

•	 The disposition schedule as the descriptor for the final stage of a record's
lifecycle

•	 Example disposition schedules
•	 The process for creating a disposition within Alfresco
•	 How to import and export the File Plan

At the end of this chapter, in a "How does it work?" section, we look in detail at
developer internals of the Share web pages used to configure the disposition schedule
for a record Category within the Records Management site. We will see how it is built
from the YUI library using the Spring-Surf web framework. We will also see how
Share communicates with the Alfresco repository using data web scripts.

What is the disposition schedule?
In the previous chapter, we discussed how to design the File Plan and we looked at
the steps needed to build the structure for the File Plan within Alfresco. One part of
creating the File Plan that we haven't discussed yet in great detail is the assignment
of the disposition schedule to the elements of the File Plan. The disposition schedule
will be the main topic of this chapter.

Creating Disposition Schedules

[208]

Disposition instructions
The Disposition Schedule forms the instructions and steps that describe what
happens at the end of the life of a record. In short, the disposition describes the
steps needed to remove or dispose of a record from the Records Management
system. The possible steps for the disposition include retention, transfer, and
ultimately destruction.

Regulations or company policy often requires that a record be retained for a certain
period of time. At some point, the record may need to be moved or transferred to
another location for permanent or long-term archival. When the record no longer
needs to be retained or is no longer needed, it may be destroyed.

The record lifecycle
Disposition focuses only on the tail end of the life of a record. The early steps in the
lifecycle of a record aren't considered at all in the instructions of the disposition. For
example, the disposition doesn't include the time when the record was first created,
when it was still just a document outside of the Records Management system.

At some point in time, when a document is recognized as having business
significance, the document will be brought into the Records Management system
and filed into a Folder of the File Plan.

After being moved into the File Plan, the document first becomes an undeclared
record, and usually, shortly after filing, is then declared as a record. But, prior
to declaration, it is necessary to complete all mandatory metadata fields on the
document.

Records declared and located in the File Plan are automatically associated with
a disposition schedule. The disposition is inherited from the record Category in
which the record is located.

Once the document is in the File Plan and is declared as a record, it is available as a
reference. While the content of the record is not changeable, the metadata of a record
can be changed, and any change to the metadata will be tracked in the audit log for
the record. The only option for replacing the content of a record is to first obsolete it
and to then file a new record.

The next diagram shows the full lifecycle of a document. The record lifecycle that
we discussed in Chapter 1 refers only to the disposition schedule applied once
the document is declared as a record. Prior to becoming a record, as a document,
frequent changes and versioning are common, and once declared as a record,
during the record retention period, it is no longer changed, but used as a reference:

Chapter 6

[209]

Cutoff
Cutoff is a term that simply refers to the point in time when the disposition
instructions of a record go into effect. In Alfresco, cutoff typically occurs as the
first step in the disposition schedule. The process of cutoff is the event that starts
the clock on the record's retention period.

Cutoff can occur at either the Folder level or at the record level. The disposition
schedule can be correspondingly configured to support either type of behavior.
When cutoff occurs at the Folder level, all records that have been filed in that Folder
will also be cut off. But when cutoff occurs at the record level, the containing Folder
itself will not get cut off, just the records that are within it.

File Plans are often set up such that during a fixed time period, like a month, a
quarter, or a year, records are filed into the Folder corresponding to that period. At
the end of the filing period, the Folder and the records that have been filed in it will
all be cut off. After the cutoff of the Folder, a new Folder is then typically opened
corresponding to the next filing period.

Creating Disposition Schedules

[210]

Retention
The retention period is the length of time before the final disposition that a record
is required to be kept. As we just saw, within the disposition, the retention period
is kicked off the moment a record is cut off.

Destruction
Destruction is one of the most frequent end-of-life actions taken on records. In the
case of destruction, electronic records must be erased by the records management
program so that the data is totally overwritten and it is not possible for it to be
reconstructed.

Paper records are typically destroyed by shredding, pulping, or burning. Often
the destruction of paper records is outsourced to companies that specialize in
record destruction.

In the DoD 5015.2 standard, the Department of Defense stipulates that
records designated to be destroyed must be destroyed in a "manner such
that the records cannot be physically reconstructed". In a specification
separate from DoD-5015.2, the methods for the destruction of classified
materials are described. DoD-5220.22-M, the National Industrial Security
Program Operating Manual, specifies that:
"Classified material may be destroyed by burning, shredding, pulping,
melting, mutilation, chemical decomposition, or pulverizing (for example,
hammer mills, choppers, and hybridized disintegration equipment)."

Transfer
Transfer refers to the physical moving of records from one location to another.
Typically, it also implies to the transferring of control or custody of the management
of the records. Particularly in the world of paper records, usually in order to
reclaim local storage space, transfer is an inevitable step for records that are to
be permanently archived and preserved, but which are no longer needed for
performing daily operations.

For electronic records, where the storage space required to archive the records
may be minimal, the transfer of records for archival and preservation may mean
moving them from one storage system to another while still keeping them under
the management of the same agency or authority. Typically though, archival is
performed by a different agency or organization from the one that originally
created the record, one that specializes in the long-term storage of records.

Chapter 6

[211]

Examples of record transfer scenarios include the following:

•	 Transfer from the originating organization to a long-term archival
•	 Transfer from the creating organization to a successor organization
•	 Transfer from the archive back to the originating organization
•	 Transfer between archives
•	 Transfer between two systems in an organization
•	 Transfer of records between business units or business partners that both

require access to the same records, but when both parties do not have access
to the same records system

Of these scenarios, the first, the transfer of records from the originating organization
to an archive, is perhaps the most common.

Any transfer of record data between two organizations or two systems requires that
both parties in the transfer agree on the transfer format prior to the transfer being
made. Often, the relationship between the two parties requires that, over time,
many data transfers will need to be made. In that case, as a matter of efficiency, it
is useful to define a specification for the standard transfer format for the data being
transferred. A specification promotes reuse and can speed the flow of data between
the two parties.

Depending on the organizations involved in the transfer, the transfer process may
involve a number of steps. For example, often it is necessary to get signoff, or even
multiple signoffs, before the record can be transferred. The transfer format may also
require that metadata be reformatted or that file data be converted to a different
electronic file formats.

Once electronic records have been successfully transferred from the records system
and the receipt of the new system is received and confirmed, the records can then be
destroyed in the original system.

Accession
Accession is a special kind of transfer that refers to the legal and physical transfer
of records to another body. It is usually used specifically relative to federal agencies
that transfer their permanent records to the National Archives (NARA) or that
transfer their temporary records to the Federal Records Center (FRC).

Creating Disposition Schedules

[212]

Inheritance of the disposition
The disposition schedule is created and associated with Category containers. In
Alfresco, the disposition is configured from the details page for the Category.

Disposition instructions defined on the Category will be inherited at either the
Folder or record level. When the disposition is created, we specify which type of
inheritance we want, at either the Folder or the record level. A disposition instruction
applied at the Folder level will affect the Folder and all of the records in the Folder.
A disposition instruction applied at the record level will be applied to each record
individually:

Disposition example—application at the Folder
level
Let's now consider an example of a disposition schedule. The example that we
will use is fairly simple, having only two steps, but not all that uncommon to a
disposition that would be used in practice. In this example, the first step of the
disposition is a trigger to cutoff the Folder at the end of the quarter. All during the
quarter, e-mails, paper records, and electronic records are filed and declared within
the Folder. Then, at the end of the quarter, the Folder is cutoff.

Chapter 6

[213]

The process of cutting off the Folder causes all records in the Folder to also be cut off.
Cutoff signals the start of a retention period that is applied to the Folder and to all of
the records in it. In this example, the retention period lasts for a quarter of a year. At
the end of the second quarter, the retention period is complete and the Folder is then
available for destruction:

After the destruction of the Folder, a stub of the Folder, and a stub for each of the
records in the Folder still remain. The Folder and record stubs maintain a complete
set of metadata and an audit log for all the actions that have occurred on the Folder
and records:

Record destruction removes only the content part of the record, that is,
the file data. The metadata for the record is not removed. Alfresco stores
file content on disk. After the content is destroyed, the associated file
stored in the repository can no longer be found, even when searching on
the local drive.

Creating Disposition Schedules

[214]

In the diagram below, we see the disposition as applied to a single Folder of a
Category. In this example, there are additional Folders not shown that parallel the
one we look at. These other Folders would activate one in each subsequent quarter.

For example, a parallel Folder called "Q2 records" would have active filings all
through the second quarter, be cutoff at the start of the third quarter, and then be
subject to destruction at the start of the third quarter. When the disposition is applied
at the Folder level in this way, we see that there is a kind of rolling Folder structure,
with a new Folder being opened each time one of the Folders is cutoff.

The diagrams shown here use notation similar to that used within Alfresco. The
red circle with a white bar represents a Folder or record that has been cut off. The
blue circle with the white lower case "i" represents a Folder or record that has been
destroyed and remains as a stub within the plan. The "i" indicates that the stub
remains for information only.

Disposition example—application at the
record level
Now consider an example where the disposition schedule is applied at the record
level. In this case, we look at how purchase orders are handled in the Finance
department. The File Plan is structured so that there is a record Series called
"Finance", under which there is a record Category that is called "Purchase Orders".

Chapter 6

[215]

Within the Category, Folders organized by the names of the companies to whom the
purchase orders are sent. In this example, we see the Folder corresponding to the
company "STM Technology".

Similar to the previous example, a record related to a purchase order sent to STM
Technology is filed into the Folder. The new record is cut off at the end of the quarter,
but unlike the previous example, the containing Folder is not affected by the cutoff:

Cutoff of the record starts the clock moving on the retention period. After five years,
the document is then destroyed, which results in the content of the record being
removed. The record is available as a stub, still containing a complete set of metadata
and audit history:

Creating Disposition Schedules

[216]

Unlike the previous example where all records within the Folder were at the same
point in the disposition schedule, records in the Folder for this example may be at
different stages of the disposition. There may be some records that are not yet cutoff,
some which are at different points of fulfilling the retention schedule, and some
where only the stub of the destroyed record remains:

Creating the disposition schedule
Let's now look in greater detail at the steps needed to create a disposition schedule.
The disposition schedule is best created and associated with the Category
immediately when the Category is created. We'll see below that the addition or
editing of a disposition schedule will have some restrictions once Folders and
records begin to be placed into the Category.

The review
While strictly not part of the disposition, a review period can be scheduled for
records that are filed under a Category. During the creation of the File Plan structure,
we saw how reviews could be specified as part of the Category definition.

Once the Category is created, the information that specifies the review period is
saved as metadata and can be changed at a later date:

Chapter 6

[217]

The review period for a record is recurring. That is, after one review is completed,
the next review will be scheduled based on the specified frequency of reviews.
Reviews are typically associated with vital records. In fact, reviews are mandatory
when dealing with vital records. But even for record Categories that will not hold
vital records, a review period can be specified.

Based on the review period entered for the Category and the date when the record
was filed, the value of a metadata field called the Next Review Date is calculated.
The value for the review date can be seen on the details page of the record to be
reviewed:

Creating Disposition Schedules

[218]

Once a record is reviewed, the next review period for the record is automatically
rescheduled. Rescheduling can be done by using the Edit Review Date option:

The disposition schedule
Once the new Category has been created, the disposition schedule for it should be
specified next. That can be done by going to the View details screen for the record
Category.

On the details page for the Category, the center section of the screen has an area
where the disposition information can be entered. The entry of the information is
split into two parts, namely, General and Disposition Steps:

Chapter 6

[219]

The disposition schedule is attached to a Category and applies to the
folders and records under that Category. We will see in Chapter 8 that
electronic and the stub placeholders for non-electronic records are
both filed in similar ways, and the steps of the disposition are applied
identically to both types of records.

General information for the disposition
In the General section, information is edited by clicking on the first of the two
Edit buttons.

On the screen that is displayed next, text labels can be entered that describe the
Disposition Authority and Disposition Instructions. The Disposition Authority
corresponds to the name of the Authority document or policy with which these
instructions comply. The Disposition Instructions is a text label that summarizes
the steps that make up the disposition schedule. The label entered here for the
Disposition Instructions gets displayed as part of the metadata for each record
under this Category to indicate the nature of the disposition.

The Applied to drop-down specifies if the disposition is to be applied at the Folder
or at the record level. As discussed earlier, and as we will see below, this flag plays
an important role in the functioning of the disposition:

Creating Disposition Schedules

[220]

When the disposition is attached at the Folder level, then the date for the next step
of the disposition to be run is shown as the Disposition As Of Date field attached at
the Folder level and the records within the Folder do not track this date. In the other
case, when the disposition is attached at the record level, then the Disposition As Of
Date field is part of the metadata for each record under the Category, and the Folders
under the Category do not track this field:

The disposition steps
After clicking on the second of the two Edit buttons, the one marked Disposition
Steps, we see the following screen displayed. Within this screen, the steps for the
disposition can be configured:

Disposition steps are added sequentially in the order in which they are to be
executed for the disposition. There are only five types of steps that can be added,
and there are rules about the order in which these step types can be added.

Chapter 6

[221]

The allowable disposition step types are as follows:

Type of
disposition Step

Description

Cutoff The point in time from which a retention period begins.
Retain A period of time during which the record is held before being

destroyed.
Transfer The transfer of records from one location to another.
Destroy The deletion of content from the record that prevents the reconstruction

of it.
Accession Accession means to acquire property. In this context, it is the process

of transferring both records and their metadata to NARA, the National
Archives. This is a step that is reserved for government agencies.

The rules for adding disposition steps are as follows:

•	 The first step must be of type Cutoff or Retain
•	 No two steps in the disposition schedule can be of the same type
•	 No steps can be added once the Destroy step has been used

In most cases, the disposition schedule is very simple and consists of just two or
three steps. The rules are such that it is possible to create nonsensical schedules, such
as a disposition with the three steps of Retain-Accession-Cutoff, but in practice, the
rules for structuring the steps work quite well.

Examples of disposition schedules are shown in the next diagram. Here we see, for
example, Cutoff followed by Destroy and Cutoff followed by Transfer:

Next, we will look at the details of how to configure the disposition steps. Built into
each step is the notion of a waiting period. The action for the step cannot occur until
it is triggered by some event or some amount of time that has elapsed. While one
possible step in the disposition schedule is a step type explicitly called Retain, the
waiting period of the trigger actually often serves the purpose of modeling retention
so that an explicit Retain step is not needed.

Creating Disposition Schedules

[222]

Note that if the disposition schedule is applied at the Folder level and the
Folder contains no records or some undeclared records, the Folder will
not be cut off. It will only be cut off when it contains at least one declared
record and no undeclared records.

Configuring a simple disposition schedule
Let's look at a simple yet often recurring disposition schedule. In this case, similar to
the example we discussed earlier, consider the schedule for cutoff of a Folder at the
end of each month, followed by a one-month retention, and then destruction. We
will model the cutoff, retention period, and destruction with just two steps.

First, we select Cutoff as the first step type to add. Next, we configure the cutoff to
occur at the end of the month after being filed. This means that Folders under this
record Category and all records filed during the month are cutoff at the end of the
month. Note that it is mandatory to enter a description on this screen to explain
what happens during this step of the disposition. When we have finished adding
information for this step, we click on Save:

Then, we add the Destroy step. In configuring this step, we need to specify how long
the records are retained prior to destruction. Our example calls for a retention period
of one month. We can enter that period information, a description for the step, and
then finally click on Save.

Chapter 6

[223]

With that, we have completed the specification for the steps of a simple disposition
schedule. We can now click on the Done button. After that, there is nothing else we
need to do in setting up the disposition for this Category:

Time-based triggers
In both of the steps for the disposition that we just created, we used time-based
triggers to specify when an action would occur. Cutoff occurred at the end of the
month, and destruction occurred after a one month retention.

A time period is specified by entering a value for the time period unit and the period
value. To activate the time period fields on the form, it is first necessary to click on
the checkbox next to the label After a period of.

The available unit types of Immediately, Day, Week, Month, Quarter, and Year are
straightforward to understand. A Week offsets a date by seven days and a Quarter
offsets the date by three months. The period value is a multiplier that specifies how
many units are to be offset, such as by 2 Quarters or 4 Weeks.

Creating Disposition Schedules

[224]

Also easy to understand are the period unit values of End of Month, End of Quarter,
and End of Year. It is also possible to specify a period value with these "End of" type
units. For example, 2 End of Month means the last day of the next month.

Other available unit types include Financial End of Month, Financial End of
Quarter, and Financial End of Year. The calendar for the fiscal year is something
that, as we might expect, is configurable. It is set up in a configuration file located
in the Alfresco repository source area. By default, these values are specified relative
to a fiscal year beginning September 1st. The file to configure the definition for
the organization's fiscal year is tomcat\webapps\alfresco\WEB-INF\classes\
alfresco\period-type-context.xml.

There is also a unit type called XML Duration. Using this type of format, we can
create an arbitrary date offset. XML Duration is based on a standard notation for
representing date offsets or durations defined by the standard ISO 8601.

More information about ISO 8601 time and time durations can
be found here at http://www.w3.org/TR/xmlschema-
2/#adding-durations-to-dateTimes

An ISO 8601 duration is represented as a string in the format PnYnMnDTnHnmnS. "P"
is always used at the beginning of the string to mark the string as containing an ISO
8601 time duration. "Y" refers to years; "M" refers to months; "D" refers to days, "T" is
used to separate the date from the time; "H" refers to hours; "m" refers to minutes; and
"S" refers to seconds. For example, the string "P1M2D" would mean an offset of one
month and two days.

As of Alfresco version 3.3.1, there is a bug in creating disposition
steps that does not allow us to enter the XML Duration value.

The period offset is relative to one of the following four events listed in the dialog
drop-down:

•	 The date filed
•	 The publication date
•	 The cutoff date
•	 The disposition action date

Chapter 6

[225]

The date filed and the publication date are properties that are defined in the aspect
called rma:record. Note that the date filed is set the first time that the document
is placed into the records File Plan. The date filed is stored in the property
rma:dateFiled. Note that this is not the same as the date that the record was
declared. When a document is declared a record, the aspect rma:declaredRecord is
applied to the document and the property rma:declaredAt within that aspect tracks
the date of declaration.

The publication date is the property rma:publicationDate. It is a mandatory
property that must be completed before a document can be declared as a record.

The cutoff date is the property rma:cutOffDate. It is attached to the record at the
time of cutoff when the aspect rma:cutOff is applied.

The disposition action date refers to the date on which the previous step action was
completed.

Event-based triggers
In addition to time-based triggers, it is also possible to specify event-based triggers.
To activate the controls on the dialog to specify an event-based trigger, we must first
click on the checkbox next to the label When event occurs.

After doing that, the form will dynamically reconfigure itself to expose a button with
a drop-down menu. From the list of menu items displayed when clicking on this
button, we can select the name of the event that we would like to be able to trigger
off of. The values in the drop-down list are strings that will later be used to label a
button associated with a record or folder. A user will later click on that button to
trigger the action for this step of the disposition.

Creating Disposition Schedules

[226]

After selecting the event from the drop-down menu, it will be added to the list of
events that can trigger the action:

Trigger precedence
It is possible to combine a time-based trigger with one or multiple event-based
triggers. It is also possible to specify multiple event-based triggers. When more
than one trigger is configured, it is necessary to also select a flag to indicate the
precedence of the triggers.

The two options for handling precedence are either that the action will not occur
until all trigger conditions have been met, or that the action will occur when one
of the trigger conditions is met. The two options that we use can be specified in
a drop-down that appears immediately below the event-trigger button.

Chapter 6

[227]

Making changes to the disposition
schedule
After the disposition has been configured, it is possible to go back and make edits to
the definition. But there are some restrictions or limitations about what can be edited.

There is generally no problem trying to edit the schedule immediately after creating
it before any Folders or records are added to the category. Right after creating the
schedule, each step of the disposition can be both edited and deleted.

Deleting steps of the disposition schedule
The red X next to an item in the list of disposition steps is for deletion. Clicking on it
will delete that step from the disposition schedule.

We need to be careful about what steps we delete because it's possible to get the list
of steps in a state that normally would not be allowed during creation. For example,
if we have a two-step schedule that consists of cutoff and destruction, we are not
prevented from deleting the cutoff step. But after doing that, the destruction step
remains by itself. This is a configuration that we normally would not have been able
to build.

We'll also find that the red X for deletion will not be available as soon as Folders or
records are placed under the Category. The behavior is slightly different depending
on whether we are applying the disposition to the Folder or the record level.

Creating Disposition Schedules

[228]

If the disposition is applied at the Folder level, as soon as a Folder is created
within the Category, the red X for deletion is no longer available on the disposition
schedule. Similarly, when the disposition is applied at the record level, the
disposition steps can no longer be deleted after a record is placed under the
Category. When the Folders and records under the Category are removed, then
the red X for deletion will again be available:

Editing steps of the disposition schedule
It is possible to do some limited editing of the steps of the disposition schedule.
While the type of step, such as cutoff, retain, or destroy, can't be changed, the
parameters for the step can be. Time-based trigger periods can be edited and
event triggers can be added or removed.

Edits made to the parameters of the disposition steps will flow down to the Folders
and records under the Category. For example, if a record was to be held for three
years prior to destruction, and the retention period is later changed to five years,
the already existing records under the Category will update to take on the new
disposition schedule.

Importing and exporting File Plan data
It is often convenient to be able to both import and export data to and from the File
Plan. In this section, we will show how this can be done.

Chapter 6

[229]

Importing a File Plan
We've described how it is possible to totally build out all of the Series, Categories,
and Folders needed to specify the File Plan for the organization. When creating
the File Plan for the very first time, there often is no other option but to do it
manually. But in certain cases, it is useful to be able to import an existing File Plan
definition or parts of one. This is particularly handy when cloning a File Plan on
one Alfresco system and moving it to another. This feature also could be used as
the final step of an automated process for importing parts of the File Plan. For
example, an automated tool might be used to build an import file containing Folders
corresponding to a company's many employees.

In order to have a working example, in addition to the sample File Plan provided by
Alfresco, this book comes with another sample File Plan. This plan is perhaps more
typical of many companies than the sample DoD plan used within Alfresco. The File
Plan was modeled on a manufacturing company. It is not intended to be complete,
nor should any part of it be adopted for actual use without first carefully reviewing it
to see that it meets your needs.

An Excel spreadsheet, FilePlan.xlsx, which comes with this book, gives a
complete description of the sample File Plan. The companion file SampleFilePlan.
acp is an importable version of the plan. The ACP (Alfresco Content Package) file
contains the complete structure for the record Series, record Categories, Folders, and
disposition schedules. The version of this ACP file used for the last chapter contained
only Series and Categories.

To import this file, from the toolbar on the File Plan page in the Records
Management site, click on the link called Import. The following dialog is displayed,
after which you can navigate to the location of the ACP file and then upload it:

Creating Disposition Schedules

[230]

After uploading the ACP import file, the screen will refresh, and you can see the
contents of the sample File Plan. The structure of the plan will look something like
the following screenshot:

Exporting the File Plan
Just as easily as we have imported a File Plan, the current state of the File Plan can
also be exported to an ACP or ZIP file at any time. This feature comes in handy while
designing the structure of the plan. It allows us to backup or take snapshots of the
current state of the File Plan.

Making backups of the entire File Plan is easy. Simply click on the Export All button
of the File Plan page toolbar. You'll be given the option to save the export file as
either a ZIP file or as an ACP file. ZIP files are useful when exporting data to non-
Alfresco systems. You should select the ACP file option when you later intend to
import the file to this or another Alfresco instance.

Chapter 6

[231]

The data exported will include the complete structure of the File Plan, including
Series, Categories, and Folders. Any records that are stored in the File Plan will also
be included in the export file. Because of that, if there is a lot of content in the system,
the export file can grow to be quite large.

Note that, on import, Alfresco systems may be sensitive to the version
of Alfresco that was used to create the ACP file. One example is with
thumbnails. Thumbnails for content items started being stored as
renditions beginning with version 3.3. Because of that, ACP files created
prior to version 3.3 with thumbnails included as part of the exported
content may not directly import into a 3.3+ system.

How does it work?
Now that we've seen how specification of the disposition schedule works from a user
perspective, let's examine some of the internals that occur when the Category and
disposition schedule are configured.

The Category details page
First, let's look at the details page for a record Category. To do that, we'll do a bit of
investigation to find out where the definition for this Spring-Surf page is defined.
If we navigate to a category and select the View details option, we can see that the
URL in the location field of the browser is something like http://localhost:8080/
share/page/site/rm/record-category-details?nodeRef=workspace://
SpacesStore/96b977ad-b4f7-472b-a10c-ccb0c06151c6.

We can trace backwards from this URL to find the pages that render and control the
Categories detail page. The clue here in this URL is the string record-category-
details. Starting with the page descriptor file tomcat\webapps\share\WEB-INF\
classes\site-data\pages\record-category-details.xml, we can see that
the <template-instance> for the page is defined to be that same name, record-
category-details:

<?xml version='1.0' encoding='UTF-8'?>
<page>
 <title>Record Category Details</title>
 <title-id>page.recordCategoryDetails.title</title-id>
 <description>Record Category Details page for Records
 Management</description>
 <description-id>
 page.recordCategoryDetails.description</description-id>

Creating Disposition Schedules

[232]

 <template-instance>record-category-details</template-instance>
 <authentication>user</authentication>
</page>

Next, tracing into the template-instance descriptor file tomcat\webapps\share\
WEB-INF\classes\site-data\template-instances\record-category-details.
xml, we will find the location for the template defined in the <template-type> tag:

<?xml version='1.0' encoding='UTF-8'?>
<template-instance>
 <template-type>org/alfresco/record-category-details</template-type>
 <properties>
 <pageFamily>documentlibrary</pageFamily>
 <container>documentLibrary</container>
 </properties>
</template-instance>

This gives us the path to where the template is defined. By looking there, we can find
the FreeMarker layout template for the Category details page. That file is tomcat\
webapps\share\WEB-INF\classes\alfresco\templates\org\alfresco\record-
category-details.ftl:

<#include "include/alfresco-template.ftl" />
<#assign doclibType="dod5015-">
<@templateHeader>
 <@link rel="stylesheet" type="text/css"
 href="${url.context}/templates/folder-details/folder-details.css"
 />
 <@script type="text/javascript"
 src="${url.context}/modules/documentlibrary/doclib-
 actions.js"></@script>
 <@script type="text/javascript"
 src="${page.url.context}/templates/folder-details/folder-
 details.js"></@script>
 <@script type="text/javascript"
 src="${page.url.context}/templates/folder-
 details/${doclibType}folder-details.js"></@script>
</@>

<@templateBody>
 <div id="alf-hd">
 <@region id="header" scope="global" protected=true />
 <@region id="title" scope="template" protected=true />
 <@region id="navigation" scope="template" protected=true />
 </div>
 <div id="bd">

Chapter 6

[233]

 <@region id=doclibType + "actions-common" scope="template"
 protected=true />
 <@region id=doclibType + "path" scope="template" protected=true
 />

 <div class="yui-gb">
 <div class="yui-u first">
 <div class="folder-details-comments">
 <@region id=doclibType + "folder-metadata-header"
 scope="template" protected=true />
 <@region id=doclibType + "folder-metadata" scope="template"
 protected=true />
 </div>
 </div>
 <div class="yui-u">
 <@region id=doclibType + "disposition" scope="template"
 protected=true />
 </div>
 <div class="yui-u">
 <@region id=doclibType + "folder-actions" scope="template"
 protected=true />
 <@region id=doclibType + "folder-links" scope="template"
 protected=true />
 </div>
 </div>

 </div>

 <script type="text/javascript">//<![CDATA[
 new Alfresco.RecordsFolderDetails().setOptions(
 {
 nodeRef: new Alfresco.util.NodeRef("${url.args.nodeRef}"),
 siteId: "${page.url.templateArgs.site!""}"
 });
 //]]></script>

</@>

<@templateFooter>
 <div id="alf-ft">
 <@region id="footer" scope="global" protected=true />
 </div>
</@>

Creating Disposition Schedules

[234]

By looking at this template layout file, we can pull off the regions where components
are to be plugged into it. We need to match the region id with the scope for
each <@region> tag. The component descriptor files for this page are found in the
directory tomcat\webapps\share\WEB-INF\classes\alfresco\site-data\
components:

RegionId and scope Component descriptor file URL
id="header"
scope="global"

global.header.xml /components/header

id="title"
scope="template"

template.title.
documentlibrary.xml

/components/title/
collaboration-title

id="navigation"
scope="template"

template.navigation.
documentlibrary.xml

/components/navigation/
collaboration-navigation

id="dod5015-
actions-common"
scope="template"

template.dod5015-
actions-common.
record-category-
details.xml

/components/
documentlibrary/dod5015/
actions-common

id="dod5015-
path"
scope="template"

template.dod5015-
path.record-category-
details.xml

/components/folder-
details/dod5015/path

id="dod5015-
folder-metadata-
header"
scope="template"

template.dod5015-
folder-metadata-
header.record-
category-details.xml

/components/folder-
details/folder-metadata-
header

id="dod5015-
folder-metadata"
scope="template"

template.dod5015-
folder-metadata.
record-category-
details.xml

/components/form

id="dod5015-
disposition"
scope="template"

template.dod5015-
disposition.record-
category-details.xml

/components/fileplan/
disposition

id="dod5015-
folder-actions"
scope="template"

template.dod5015-
folder-actions.
record-category-
details.xml

/components/folder-
details/dod5015/folder-
actions

id="dod5015-
folder-links"
scope="template"

template.dod5015-
folder-links.record-
category-details.xml

/components/folder-
details/folder-links

id="footer"
scope="global"

global.footer.xml /components/footer

Chapter 6

[235]

The <@region> tags reference the pluggable components that will be displayed on
this page. By looking at the markup used by each of the components combined with
the markup of the base FreeMarker template, we can map the location for each of
these regions to their location on a screenshot for the web page:

The edit disposition instructions page
When we discussed the Alfresco content types earlier, we saw that there is a
content type that is called rma:dispositionschedule that holds a set of lifecycle
instructions for the Category container.

Creating Disposition Schedules

[236]

Let's review the relationship of the Category container to the disposition schedule
by looking again at the UML diagram for the Records Management content
model. In the model, these two entities are called the dod:recordCategory and the
rma:dispositionSchedule:

Because every dod:recordCategory has rma:scheduled as a mandatory aspect, each
dod:recordCategory also has a single rma:dispositionSchedule attached to it as a
child association, and the disposition schedule in turn can be attached with multiple
rma:dispositionActionDefinition child associations.

We can investigate the relationship between the record Category and disposition
schedule by seeing how it is applied in practice. Let's see how this works by
making use of the Node Browser again in the Alfresco JSF Explorer client. If we
navigate in the Node Browser to a Category node, we can see that it indeed has a
child relationship to an rma:dispositionSchedule. We do this by first navigating
to the Alfresco store called workspace://SpacesStore and, within that store,
navigate to the node with this path: app:company_home/st:sites/cm:rm/
cm:documentlibrary/cm:Finance/cm:Benefits.

The File Plan being used in this description corresponds to the sample File
Plan included with this book.

In the Node Browser, we can see a list of the child nodes that are attached to the
Category node. The first node in that list is called the dispositionSchedule and the
Association Type for it is also called the dispositionSchedule. All the other child
associations correspond to nodes of type rma:recordFolder. They are Folder nodes
and have the Association Type of contains. From the perspective of the standard
Share UI of the File Plan, the contains nodes are the ones that will be picked up for
display as Folders within the Category:

Chapter 6

[237]

Going back to the Category Details page, let's now click on the top Edit button
marked General within the Disposition Schedule area of the Category details page:

After doing that, an Edit Metadata screen is shown. The screen itself isn't too
interesting, and actually, you will probably find it familiar. This screen is the same
one that is used by the Share document library and File Plan when editing standard
content metadata.

Creating Disposition Schedules

[238]

The type of content here though is really no different, even though the node
whose metadata is being edited is of type rma:dispositionSchedule and not of
cm:content type that we are more familiar with. The form that is used to edit the
metadata will vary based on the type associated with the node. Note that the unique
reference to the node is passed in to the edit-metadata page as the final parameter
of the URL:

There are three properties that are editable for the disposition schedule. Of these, the
Disposition Authority and Disposition Instructions are both labels and the Applied
to field is a Boolean.

Immediately, when a Category is created, the child association to a node of type
rma:dispositionSchedule exists. If we were to look at that disposition node in the
Node Browser right after being created, we would see that nothing is set yet. There
are no child associations and the labels for the Authority and the Instructions have
not yet been initialized. After saving the Edit Metadata page, the properties on the
disposition will be updated.

The create disposition steps page
When the second Edit button of the disposition schedule area of the Category details
page is pressed, a new page called disposition-edit is called. A screen like the
following is displayed, showing the steps of the disposition schedule:

Chapter 6

[239]

Again, by looking at the URL, we can investigate where this page is defined. The
Spring-Surf page descriptor for this screen is the file tomcat\webapps\share\WEB-
INF\classes\alfresco\site-data\pages\disposition-edit.xml.

<?xml version='1.0' encoding='UTF-8'?>
<page>
 <id>disposition-edit</id>
 <title>Edit Disposition Schedule</title>
 <title-id>page.dispositionEdit.title</title-id>
 <description>Page for editing the disposition
 schedule</description>
 <description-id>page.dispositionEdit.description</description-id>
 <template-instance>disposition-edit</template-instance>
 <authentication>user</authentication>
</page>

This page descriptor defines the <template-instance> tag with the value of
disposition-edit. The template-instance definition can be found in the file
tomcat\webapps\share\WEB-INF\classes\alfresco\site-data\template-
instances\disposition-edit.xml.

<?xml version='1.0' encoding='UTF-8'?>
<template-instance>
 <template-type>org/alfresco/disposition-edit</template-type>
 <properties>
 <pageFamily>documentlibrary</pageFamily>
 </properties>
</template-instance>

Creating Disposition Schedules

[240]

From this file, we in turn find the definition for the template location. It is in the path
tomcat\webapps\share\WEB-INF\classes\alfresco\templates\org\alfresco\
disposition-edit.ftl. This FreeMarker layout file doesn't have much happening
in it. The top three <@region>s are the standard header, title, and navigation
regions, and the bottom one is the standard footer:

<#include "include/alfresco-template.ftl" />
<#import "import/alfresco-layout.ftl" as layout />
<@templateHeader>
 <@link rel="stylesheet" type="text/css"
 href="${url.context}/templates/disposition-edit/disposition-
 edit.css" />
</@>

<@templateBody>
<div id="alf-hd">
 <@region id="header" scope="global" protected=true />
 <@region id="title" scope="template" protected=true />
 <@region id="navigation" scope="template" protected=true />
 <h1 class="sub-title"><#if
 page.titleId??>${msg(page.titleId)!page.title}<#else>$
 {page.title}</#if></h1>
</div>
<div id="bd">
 <@region id="disposition-edit" scope="template" protected=true />
</div>
</@>

<@templateFooter>
 <div id="alf-ft">
 <@region id="footer" scope="global" protected=true />
 </div>
</@>

Components of the disposition edit webscript
The real <@region> of interest here is the one called disposition-edit. We can
look up the definition of this component in the file tomcat\webapps\share\
WEB-INF\classes\site-date\components\template.disposition-edit.
disposition-edit.xml. There we will find the identifying URL of the component
as /components/fileplan/disposition-edit. This then finally leads us to the
webscript descriptor file tomcat\webapps\share\WEB-INF\classes\alfresco\
site-webscripts\org\alfresco\components\fileplan\disposition-edit.
get.desc.

Chapter 6

[241]

The working parts of the webscript itself consist of the files disposition-edit.get.
head.ftl, disposition-edit.get.html.ftl, and disposition-edit.get.js, all
of which are in the same directory.

The JavaScript controller file disposition-edit.get.js calls into the Alfresco
repository and retrieves the list of values used in the drop-downs of the page:

// Call the repo to create the site
var scriptRemoteConnector = remote.connect("alfresco");
var repoResponse = scriptRemoteConnector.get("/api/rma/admin/
listofvalues");

The URL for this service call resolves to something like http://localhost:8080/
alfresco/service/api/rma/admin/listofvalues. The response to this URL is
a JSON object that contains the available list of disposition actions, events, period
types, period properties, and audit event. These values are collected, added to the
model, and made available for display in the FreeMarker presentation template.

The file disposition-edit.get.html.ftl specifies the rendering of the layout for
the disposition-edit component. In the file disposition-edit.get.head.ftl,
the client-side JavaScript file tomcat\share\components\fileplan\disposition-
edit.js is imported into the final page. This file is where some of the more
interesting page interactions are handled.

Disposition edit client-side JavaScript
The file disposition-edit.js is used on the client. It describes a YUI object called
Alfresco.DispositionEdit that handles the dynamics and interactions with the
user on the page. When the page initializes, this object is created and runs through
the onReady() method. The last step of that method is to call the _loadActions()
method that loads and displays the disposition schedule steps.

The method makes the following AJAX call into the repository to retrieve the
disposition schedule and the instructions for the steps of the schedule:

Alfresco.util.Ajax.jsonGet(
{
 url: Alfresco.constants.PROXY_URI_RELATIVE + "api/node/" +
 this.options.nodeRef.replace(":/", "") + "/dispositionschedule",
 successCallback:
 {
…

Creating Disposition Schedules

[242]

The URL of the AJAX service call, when substituted with the node reference for the
Category node, will resolve to something that looks like http://localhost:8080/
alfresco/service/api/node/workspace/SpacesStore/0ff56759-b216-4c95-
a4ed-dc5119e72b69/dispositionschedule.

The JSON response to this request returns all the data for the disposition schedule
and the associated actions. These are then processed and loaded for display on the
screen for specifying the disposition steps:

{
 "data":
 {
 "url":
 "\/alfresco\/service\/api\/node\/workspace\/SpacesStore\
 /0ff56759-b216-4c95-a4ed-dc5119e72b69\/dispositionschedule",
 "nodeRef": "workspace:\/\/SpacesStore\/3aa26e6f-cad8-4163-9eec-
 e40e8723acc5",
 "authority": "Corporate Policy",
 "instructions": "Cutoff at end of month. Destroy after 5 years",
 "recordLevelDisposition": true,
 "canStepsBeRemoved": true,
 "actionsUrl":
 "\/alfresco\/service\/api\/node\/workspace\/SpacesStore\
 /0ff56759-b216-4c95-a4ed-dc5119e72b69\/dispositionschedule\
 /dispositionactiondefinitions",
 "actions":
 [
 {
 "id": "c87359e6-bdda-45ad-aa9b-cdea5411a470",
 "url":
 "\/alfresco\/service\/api\/node\/workspace\/SpacesStore\
 /0ff56759-b216-4c95-a4ed-dc5119e72b69\/dispositionschedule\
 /dispositionactiondefinitions\/c87359e6-bdda-45ad-aa9b-
 cdea5411a470",
 "index": 0,
 "name": "cutoff",
 "label": "Cutoff",
 "description": "Cutoff at end of month.",
 "period": "monthend|",
 "periodProperty": "rma:dateFiled",
 "location": "",

 "eligibleOnFirstCompleteEvent": true
 }
 ,
 {

Chapter 6

[243]

 "id": "5fd679c4-0e4c-455e-a745-b1f0927d2edd",
 "url":
 "\/alfresco\/service\/api\/node\/workspace\/SpacesStore\
 /0ff56759-b216-4c95-a4ed-dc5119e72b69\/dispositionschedule\
 /dispositionactiondefinitions\/5fd679c4-0e4c-455e-a745-
 b1f0927d2edd",
 "index": 1,
 "name": "destroy",
 "label": "Destroy",
 "description": "Destroy after 5 years",
 "period": "year|5",
 "periodProperty": "rma:cutOffDate",
 "location": "",

 "eligibleOnFirstCompleteEvent": true
 }

]
 }
}

In the JSON response, we see that the dispositionSchedule node has two child
node associations, one for each of the steps in the disposition. We can also see that
in the Node Browser:

Summary
One of the most important things to configure within the File Plan is the retention
schedule—the specification for how long a type of record needs to be retained before
being disposed of. In the DoD 5015.2 specification, retention schedules are a key
component of the disposition schedule. In this chapter, we learned how to configure
the disposition schedules. We covered the following topics:

•	 How to configure the disposition schedule
•	 The types of steps that can be created in a disposition schedule

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating Disposition Schedules

[244]

•	 The difference between applying the disposition at the Folder and
record levels

•	 How to configure both time and event-based triggers

At the end of the chapter, in a 'How does it work' section, we looked, in detail, at
how the Alfresco site Edit disposition web page is constructed. In particular, we
covered:

•	 How the page was built as a Spring-Surf web page
•	 Some examples of YUI web client components and the use of the YUI

framework to handle client-side event processing
•	 The relationship between the disposition schedule and its record Category in

the content model
•	 How AJAX calls from the client can retrieve content from the Alfresco

repository to populate data into the client web page

In both this chapter and the last, we covered the setup and configuration of the
Records Management File Plan. With the File Plan now in place, we are ready to
actually begin filing content into the plan and we will discuss some of the many
ways that filing can be done within Alfresco in the next chapter.

Filing Records
In the last chapter, we saw how to set up the File Plan for a Records Management
system. In this chapter, we now turn to look at the many ways in which records can
be filed into the plan.

In this chapter, we will describe:

•	 How to file both electronic and non-electronic records from within Share
•	 How to mount the File Plan as a drive that can be filed to directly from the

desktop
•	 How to file from within an e-mail client
•	 How to bulk file large numbers of documents

At the end of this chapter, in a "How does it work?" section, we will look at Share
internals to examine two different aspects of records filing: electronic file uploads
and non-electronic record registrations.

The file upload process is streamlined by making use of the Flash upload control
in the YUI library. We'll look at how this control works and see how it enables
multi-file uploads from the browser to be as quick and easy as uploading a file
from a thick client application.

The non-electronic record registration provides a good example of how Alfresco
forms can be displayed as part of a dynamic pop-up dialog.

Filing Records

[246]

Filing—more than one way
Filing is the process of classifying records and then correctly placing records into
the File Plan. While the Records Management site within Alfresco Share makes web
client filing straightforward and easy, Alfresco provides numerous other ways for
records to be filed into the records system.

The many different interfaces that Alfresco offers to interact with the repository
can shrink the learning curve and accelerate acceptance of the system. For example,
many users are enthusiastic to learn that they can continue to interact with the
Alfresco repository just like it were a shared file server. Many users also spend much
of their time using e-mail, and for those users, Alfresco features are built into their
favorite e-mail clients, like IMAP folders and SMPT inbound e-mail, both of which
can significantly streamline a user's access to the repository.

Alfresco provides tools for getting many records into the system quickly. Bulk
import methods, like the client Flash upload dialog in the web client, integration
with scanners, and command-line upload scripts, allow large numbers of records
to be captured and filed very quickly.

In this chapter, we will look in detail at some of the many different ways to file
into the Records Management system.

Chapter 7

[247]

While there may be more than one way to file a record, all the different
filing methods access the records repository in a consistent way based
on the user's access rights. Different ways of filing allow different styles
of working to be accommodated, making the system easier and more
convenient to access. But this flexibility does not imply any inconsistency
in terms of policies.
Consistency is a best practice for Records Management programs and
it provides credibility to the program. Consistency means that the same
policies and procedures are applied repeatedly without exception under
a variety of conditions. No matter what the location, no matter what type
of media, no matter which business group, records across all parts of the
organization are treated in a similar manner.
In Chapter 1, we discussed a number of drivers that motivate
organizations to adopt Records Management systems. Different
motivators can mean that different groups within the organization may
have different objectives or goals for what they would like to achieve with
Records Management.
For example, Finance and Accounting business units may be particularly
focused on financial records required to comply with regulations, while
the Legal business unit may have a greater focus on the maintenance of
corporate legal records. These different business units also often have
different workflows and different ways of doing business.
Despite these differences in objectives, the organization is best served
when all records are treated in the same way. Only by doing this can the
organization demonstrate the legal credibility of their records program.
The flexibility in the many ways that records can be filed in the Alfresco
system means that it is easier for all business units to contribute to
and interact with the records system while still being consistent with
organization-wide record standards.

Filing an electronic record from Share
Now that the File Plan is set up, it is easy to start filing records directly by using
the Records Management site within Share.

Recall that records can be filed into only the record Folders of the File Plan. It is not
possible to put records into either Series or Categories. To prevent us from doing
so, the File icon on the toolbar is visible but grayed out, and not selectable when
positioned within either Series or Category containers.

Filing Records

[248]

From the File Plan page of the Records Management site, we can navigate into a
Folder of the File Plan. When we are within a Folder container, the File icon of the
toolbar then becomes available for selection:

Clicking on the File button will display a dialog that prompts us to enter the type
of record that we would like to file, either Electronic or Non-electronic. In this first
example, we would like to file an Electronic record, so we select that option:

At the top of the dialog for uploading files, there is an option to specify the Record
Type for the files that will be uploaded. The drop-down menu shows five different
types of records:

•	 Default
•	 Scanned Record
•	 PDF Record
•	 Digital Photograph Record
•	 Web Record

The file being uploaded is created by default as type cm:content. Recall that we
saw in Chapter 4 in the discussion of the Content Model that cm:content is the
base document type in Alfresco from which all other documents types with content
inherit from. Selecting a Record Type from the drop-down applies an aspect and the
associated properties of that aspect to the record.

We saw near the end of Chapter 4 that the record type aspects listed here are part
of the dod content model. These aspects define the record types and their property
sets that are recommended for use by the DoD 5015.2 specification. In Appendix B
(which is available for download from the Packt Publishing website), the properties
associated with these record type aspects are listed in greater detail.

Chapter 7

[249]

These record types are defined in the Content Model file tomcat\
webapps\alfresco\WEB-INF\classes\alfresco\module\
org_alfresco_module_dod5015\model\dod5015Model.xml. In
that file, in a similar way, new record types could be defined to extend
the list here and existing record type definitions can be modified.

If we don't apply a record type aspect and leave the Record Type value as Default,
no additional aspect properties will be applied to the record.

Each of the four non-default record-type aspects has at least one property
that is mandatory. Recall that before a document can be declared a record,
all mandatory metadata needs to be defined.

The following diagram shows the four record-type aspects and the metadata
properties associated with each one:

Note that a record type aspect is something that can also be applied
later, after the file has been uploaded, while it is still in the state of an
undeclared document.

Filing Records

[250]

Next, the files that we wish to upload are selected and finally the Upload Files
button is clicked on. After that, files are uploaded using Flash. The dialog is dynamic
and provides feedback on the status of the upload, indicating the state of upload for
each file and a counter that shows how many of the files have completed. After the
upload is done, the label Upload Files on the dialog button will change to OK:

After clicking on OK, the contents for the Folder will be refreshed and we see that
the files have been uploaded. Note that the documents at this point are still denoted
as Undeclared Records.

Undeclared Records are documents that have been placed into the File Plan, but
that have not yet entered into the steps of the disposition schedule. The record
lifecycle does not begin until the record is actually declared as a record. The process
of filing the document into the File Plan adds properties to it that are needed for
processing it as a record, like the unique record ID and the date the record was filed.
The additional properties are from the record aspect that is applied to the document
when it is filed.

Chapter 7

[251]

Note that the system will not allow you to file two records with the same
name into a Folder. Within a Folder, the record names must be unique.

Filing a non-electronic record from Share
We just saw that when filing into a Folder, a dialog first prompts to see whether
an electronic or non-electronic record is to be filed. In the last section, we then
saw how an electronic record is filed. In this section, we will look at the case of
a non-electronic record.

When we select Non-electronic record filing, we are presented with a form to collect
metadata associated with the record we are about to file. By filing a non-electronic
document, we create a stub entry that references a physical document within the
Records Management site that contains no file content. The non-electronic record
typically refers to a paper record, but the record could be stored on any type
of media, including, for example, older, but popular, archival media types like
microfilm, aperture cards, and microfiche:

Filing Records

[252]

After completing the metadata for the Non-electronic record, we click on the Submit
button. After doing that, a new Undeclared Record entry is added to the Folder. The
thumbnails for all non-electronic records are represented with the same icon:

After filing the record, additional information about it can be entered by editing
the metadata to include information such as the location of the physical record,
the media type it is stored on, and the format.

Filing from another Share site
Since we are using the Records Management site within Share, it is likely that we
are also using standard Share sites to manage other types of documents, content,
and collaboration data in our organization.

We've seen earlier that Share sites are especially good at providing a central point for
organizing the content associated with a project, such as a project's documents, files,
schedules, and discussions.

Standard Share sites, for example, can be used to manage the process for creating
new documents, making use of document management capabilities like versioning
and workflow. At some point, documents from within a Share site could then be
moved and filed into the Records Management system.

Filing a document from a standard Share site into the Records Management site is
easy to do. From within a Share site Document Library, a document is selected and
marked to be moved:

Within the pop-up dialog that displays, it is then possible to navigate into the File
Plan of the Records Management site and then file the document as a record:

Chapter 7

[253]

Filing a record from a CIFS mounted
drive
CIFS is one of the most popular ways to access the Alfresco repository from a
desktop without having to use a specialized software application. We can use CIFS
to file records within the Records Management site or documents into a standard
Share site, Document Libraries.

What is CIFS?
CIFS stands for Common Internet File System. It is a protocol that was originally
created by Microsoft to allow a Windows 95/98/NT client machine to access files
stored on another Windows machine. It allows remote access to files on another
computer.

Alfresco's CIFS technology is based on a Java implementation of the protocol created
by Microsoft called JLAN. But JLAN is richer than just CIFS. It also supports NFS
and FTP protocols as well as authentication like Kerberos, NTLM, and Active
Directory. Alfresco acquired JLAN in 2005 and later converted it into an Open Source
technology using a GPLv2 license.

The JLAN technology is embedded in Alfresco and it is also
available as a standalone product. It was originally developed by
Gary Spencer. A high-level technical specification for the JLAN
technology can be found at http://www.alfresco.com/
products/aifs/.

Filing Records

[254]

Filing with CIFS
With JLAN, Alfresco is able to emulate the CIFS protocol. The Alfresco repository
can respond to CIFS protocol requests, making it appear and act just like an external
file server. That means that applications that can interact with CIFS servers, such
as Windows Explorer, are able to connect to the Alfresco CIFS interface. Users can
navigate through the folders and documents of Alfresco just like the folders and files
of a file server. Filing into Alfresco becomes as simple as dragging a document from
the desktop into the CIFS-mounted drive.

Only Alfresco Share users are able to map to and connect to the Alfresco CIFS drive.
During each operating system session, the user will need to authenticate with Share
in order to access the mapped drive. The user gains access to the CIFS drive with
the same user credentials as with the Share web client and has the same access
permissions to elements of the File Plan as in the web client:

Chapter 7

[255]

Configuring CIFS
If we've installed an Alfresco "full setup" version for the Windows platform, CIFS
may already be active on our server. If so, that's great. Let's look at what may need
to be changed in the configuration of the CIFS drive.

Remember that CIFS emulates the access of a file server on a remote machine.
Because of that, access to the Alfresco CIFS interface is referenced with a unique host
name. By default, when Alfresco starts, CIFS is assigned a host name constructed by
taking the host name of the Alfresco server and appending the letter "A" to it. For
example, since my computer name is DW_FTK_CA, the Alfresco CIFS server that
runs on it, by default, is called DW_FTK_CAA.

The format for accessing an Alfresco repository path is \\machinename\Alfresco\
path; for example, the path to the Records Management File Path on my machine
would be written as \\DW_FTK_CAA\Alfresco\Sites\rm\documentLibrary.

To make sure that we have the correct Alfresco CIFS path, we can look it up in the
Alfresco JSF Explorer client by navigating to the folder within the repository that we
would like to map as the root for our CIFS drive. By moving the mouse over the icon
to the right of the folder name directly under the path breadcrumb, the correct CIFS
path for reaching the directory is displayed:

Filing Records

[256]

Once we know the CIFS path for the repository folder, we can then map it as an
accessible remote folder. For example, on a Windows operating system, the CIFS
drive can be mapped using Windows Explorer. Within the Map Network Drive
dialog available from the Tools menu in Windows Explorer, the CIFS path can be
entered and assigned to a drive letter, as shown in the screenshot below:

Troubleshooting CIFS
CIFS is a great option for making it easy to access the repository and users typically
love it, but getting it set up can sometimes cause problems. If CIFS didn't work for us
right out of the box, there are some things we can do to try to troubleshoot it.

If, for example, we don't see CIFS paths showing up on the page of a folder in the
repository within the JSF Alfresco Explorer client, it means that the CIFS server is
probably not running. Other reasons it may not work include issues with DLLs on
Windows, improper port settings, and authentication setting conflicts.

Checking to see whether the CIFS server is running
To investigate whether the CIFS server is actually running, we first need to know the
name of our machine. Make sure that we have the correct name for our machine. In
Windows, we can find the machine name by using the net command from a DOS
command line:

Chapter 7

[257]

C:\>net config workstation

Computer name \\DW_FTK_CA

Full Computer name DW_FTK_CA

User name Dick

Using nbtstat, we can then check whether the CIFS drive is available. We should
see two entries for the CIFS drive when we do the following:

Make sure that we've started the Alfresco server
before running this command.

C:\>nbtstat -n

Local Area Connection 1:

Node IpAddress: [172.16.1.135] Scope Id: []

 NetBIOS Local Name Table

 Name Type Status

 DW_FTK_CA <00> UNIQUE Registered

 DW_FTK_CA <20> UNIQUE Registered

 DW_FTK_CAA <20> UNIQUE Registered

 DW_FTK_CAA <00> UNIQUE Registered

Here we see DW_FTK_CAA, which is the CIFS server, included in the list. If we don't
see the CIFS server in this list, it has definitely not started up, and we'll need to
troubleshoot what might have gone wrong.

Missing NetBIOS DLL
On a Windows machine, JLAN needs to find win32netbios.dll on the system
path. A copy of this file is in the <Alfresco>\bin directory. If we don't already
have a copy of this DLL in the C:\Windows\System32 folder, we should copy it
over to that location.

Filing Records

[258]

Problems with ports
Another common problem is that the ports that CIFS needs to use may already be
used by something else. The standard ports that CIFS tries to use are TCP 139/445
and UDP 137/138. When Alfresco is running and CIFS is working correctly, running
netstat on Windows helps us check to see if those ports are being used. To do this,
we shut down the Alfresco server and look for activity on these ports. If we come
across a conflict, we need to reconfigure CIFS to run on different ports:

C:\>netstat -an |find /i "listening" |find "139"

 TCP 172.16.1.135:139 0.0.0.0:0 LISTENING

C:\>netstat -an |find /i "listening" |find "445"

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

C:\>netstat -an |find /i "UDP" |find "137"

 UDP 172.16.1.135:137 *:*

C:\>netstat -an |find /i "UDP" |find "138"

 UDP 172.16.1.135:138 *:*

Configuring a different set of ports can be done by overriding the standard ports in
the tomcat\shared\classes\alfresco-global.properties file. For example, the
following entries could be added to that properties file to define non-privileged ports
to be used with CIFS, after first verifying that there is no existing conflict with these
new port assignments too:

cifs.tcpipSMB.port=1445
cifs.netBIOSSMB.namePort=1137
cifs.netBIOSSMB.datagramPort=1138
cifs.netBIOSSMB.sessionPort=1139

CIFS server name is too long
The maximum length of a machine name in Windows is 10 characters. If our server
machine name is 10 characters long, a CIFS machine name constructed by appending
the letter "A" to it will fail because the CIFS machine name would be too long for
Windows. In that case, we should override the default CIFS name with our own. We
can define a new CIFS machine name shorter than 10 characters in the alfresco-
global.properties file by adding the following line to it:

cifs.serverName=ShortName

Chapter 7

[259]

Conflicts with authentication settings
Note also that CIFS isn't compatible with certain Alfresco authentication systems
that do not support CIFS, such as LDAP or Active Directory. If we have changed our
authentication scheme to use either of those systems, then that is a problem. In those
cases, CIFS will be automatically disabled. In order to get both CIFS and LDAP to
work together, or to use some other authentication system, we have to set up what is
called an authentication chain.

Complete information for configuring CIFS, NFS, and FTP is
available on the Alfresco wiki at http://wiki.alfresco.
com/wiki/File_Server_Subsystem#SMB.2FCIFS_
Server_Configuration. Some tips about getting CIFS
running on Windows can be found here at http://wiki.
alfresco.com/wiki/CIFS_Windows

Filing from an e-mail client with IMAP
Following in the same theme of being able to access Alfresco without needing
to start up the Share application, Alfresco's IMAP integration, available since
version 3.2, allows users to access the Alfresco repository via their e-mail client.

What is IMAP?
IMAP or Internet Message Access Protocol is a standard Internet protocol that
allows an e-mail client to access e-mail on a remote mail server. IMAP is a feature
available on most popular modern e-mail clients, such as Outlook, Outlook Express,
Apple Mail, and Thunderbird.

IMAP allows the e-mail client to be able to interact with the Alfresco repository.
Folders within Alfresco can be exposed as IMAP folders and grouped within the
e-mail client folder list, for example, appearing under the list of folders with entries
such as the user's inbox or sent folders.

Filing Records

[260]

Filing with an IMAP e-mail client
Filing into Alfresco via the Alfresco IMAP folder is easy. It is just a matter of locating
the folder to which we want to file within the Alfresco folder hierarchy and then
dragging the e-mail into that folder.

Similarly, we can also file by right-clicking on an item in the inbox and then selecting
the option of Move to Folder. Doing that will display a list of all available folders in
Outlook, including the Alfresco IMAP folder, and from that list, the correct Alfresco
folder can be selected in which to file:

Configuring IMAP
For users to access Alfresco using IMAP, there are configurations that need to be
made on both the server and the client.

Configuring IMAP to run on the server
The Alfresco IMAP server can be turned on by configuring the tomcat\shared\
classes\alfresco-global.properties file. It isn't available by default. Adding
the following lines to the global properties file will enable it:

Chapter 7

[261]

imap.server.enabled=true\
imap.server.port=143
imap.server.host=formtek.com

Here imap.server.host is the name of our network server. The value used for
the host name should be the IP address or the DNS address for the outward-facing
network. After adding these lines to the alfresco-global.properties file, recycle
the Alfresco server. During startup, in the Alfresco log file, we will notice an entry
that should confirm that the IMAP server successfully started:

11:09:44,203 INFO [repo.imap.AlfrescoImapServer] IMAP service
started on host:port formtek.com:143.

Next, log in to Share as the user admin and, from the My Sites dashlet on the home
page, notice that there are two stars to the left of the Records Management site
name. Click on the one on the right with the tiny e-mail image. Doing this will make
the Records Management site visible to privileged users as IMAP folders from their
e-mail clients:

The Alfresco IMAP server is now ready to communicate with e-mail clients.
The default repository mount location for the IMAP server is the Company Home
directory of Alfresco.

There are variations to this default configuration that can be made. The mount point
can be configured to be at a different folder in the repository, and it is also possible to
define more than a single mount point.

For example, adding these three lines to the previous configuration will restrict the
mount point to being at the top of the File Plan:

imap.config.server.mountPoints.default.rootPath=/${spaces.company_
home.childname}/st:sites/cm:rm/cm:documentLibrary
imap.config.server.mountPoints.value.AlfrescoIMAP.
mountPointName=Records
imap.config.server.mountPoints.value.AlfrescoIMAP.modeName=MIXED

Filing Records

[262]

A description of all the available configuration settings for the IMAP
server can be found on the Alfresco wiki at http://wiki.alfresco.
com/wiki/The_IMAP_Subsystem.

Configuring IMAP on e-mail clients
Getting the IMAP server to run is relatively painless, but getting it to work on
individual e-mail clients is a bit more work, with the method for configuring each
client being slightly different. Let's look here to see what is necessary to configure
Outlook 2007 to recognize Alfresco as a mount point.

IMAP configuration for Outlook 2007
Outlook is probably one of the most common e-mail clients. Let's look to see how an
Outlook 2007 client can be set up to connect to the Alfresco repository.

From the Outlook client, select the Tools | Account Settings menu item. After doing
that, the Account Settings dialog should display. Stay on the left-most tab labeled
E-mail. Below that tab, click on the New option. If an Auto Account Setup screen
appears, select the option to Manually configure server settings near the bottom of
that dialog.

At that point, our screen should look something like the following screenshot:

Chapter 7

[263]

On the Choose E-mail Service dialog, select the top option for specifying an Internet
E-Mail account:

Filing Records

[264]

Then on the Add E-mail Account screen, define the information for connecting to the
Alfresco IMAP server.

Click on More Settings, and we can then enter the name that will be displayed for
the IMAP folder in Outlook. After entering the name, click on OK and go back to the
parent dialog:

We can now test the connection. After doing that, the configuration is finished. We
can click on Next and then on Finish to create the new e-mail account.

Immediately after doing that, the IMAP mapping becomes active and we see the
mounted Alfresco repository show up in the left-hand panel of the Outlook window.
Let's try dragging something into one of the File Plan folders, and after doing that, we
can verify in Share that we have indeed successfully filed an e-mail from Outlook.

It's also possible to drag an e-mail from the File Plan back into the inbox or another
folder in Outlook. When browsing through the File Plan folders, all e-mails filed into
the repository display within Outlook as normal e-mail documents, showing the
body and attachments. The Alfresco IMAP folder functions like any other Outlook
folder.

Chapter 7

[265]

Outlook is also able to browse records that are not e-mails but which are filed in the
File Plan. When we browse to a record that is not an e-mail, we see the metadata for
the record displayed as the body of the e-mail. The body of the e-mail also contains
links to the record content. For example, clicking on the Content URL link will
launch the file content for the record.

It is possible to configure the template that is used to
display the metadata in the e-mail body. By changing
the template, the layout format can be customized. The
template can be found stored in the repository in the
directory /Company Home/Data Dictionary/Imap
Configs/Templates.

Additional information about configuring Outlook and other IMAP
e-mail clients that can connect to the Alfresco repository can be found
on the Alfresco wiki: http://wiki.alfresco.com/wiki/IMAP

Filing Records

[266]

Filing to Alfresco via FTP
One more way to file records into the Alfresco repository is by connecting to the
Alfresco repository using FTP. Again, access to the repository is very easy to do, this
time using any standard FTP client. In the figure below, we see access to the Alfresco
File Plan using the FTP client Filezilla.

In a similar way to CIFS and IMAP, Alfresco can run as an FTP server. By default,
the Alfresco server uses port 21, and no additional configuration should be needed.
Although with FTP, as with both CIFS and IMAP, problems can occur in setting up
the server when the port that Alfresco attempts to run on is already being used by
another process:

Chapter 7

[267]

Bulk import
Let's now discuss one way to import a large number of records into the File Plan at
one go. One existing tool that will let us do this is called the Alfresco Bulk Filesystem
Import tool. The Import tool imports into Alfresco, from a specified directory that is
local to the Alfresco server, the folder structure underneath that directory and all the
files that are contained within it.

The Alfresco Bulk Filesystem Import tool can be downloaded from
Google Code at http://code.google.com/p/alfresco-
bulk-filesystem-import/. The import tool was written by
Peter Monks, an employee of Alfresco.

An unsupported add-on
The Import tool was intended to support the import of folders and files into the
standard Alfresco repository. The tool works fairly well in being able to import files
quickly and has achieved some amount of popularity in the Alfresco community.
However, one caveat is that the Import tool isn't part of the standard Alfresco
product and, as such, isn't officially supported. If we have a lot of files to import
though, it is definitely something worth checking out.

Bulk import and Records Management
considerations
The other thing to note is that it is likely that the Import tool was not built with
any thought about Records Management in mind, and because of that, and because
of the special characteristics of the records File Plan, there are some considerations
that we need to keep in mind when applying the Import tool to Records
Management content.

Bulk import can't import disposition information
One problem to note in particular is with record Categories. The tool does not
provide a way to be able to associate a disposition schedule with the Category.

If the intent is to have the disposition schedule apply at the record level, the Import
tool won't help because once records are filed under a Folder of the Category, it is no
longer possible to go back and create a disposition schedule as one that applies at the
record level. If Categories, Folders, and records are imported with a single batch run,
this then causes a problem.

Filing Records

[268]

On the other hand, if the disposition is to be applied at the Folder level, importing
Categories should work, but dispositions will need to be added to each Category
after the tool is run.

For Records Management purposes, it is probably best to limit the use of the Import
tool to the bulk import of Folders and records into the File Plan. The File Plan Series
and Category structure should already be in place when the tool is run.

Installing bulk import
Installing the Import tool is easy and quick to do. First, the Alfresco server should be
shut down. Then, download and copy the AMP file for the Import tool and place it in
the amps directory under the alfresco root. Finally, from within the alfresco root
directory, run the apply_amps.bat batch file.

Simple interface to access bulk import
After installing the tool, there is a very simple web page that we can bring up to try
it. If we go to the URL http://localhost:8080/alfresco/service/bulk/import/
filesystem, we will see a page similar to the following:

Next, we need to prepare some files for import. As an example, let's place files into a
local server directory called BulkImport.

Note that the Import tool will fail to work correctly when run
from a client machine that specifies a path that is not available
for the server to reach.

Chapter 7

[269]

Bulk import shadow files
Associated with each folder and file to be imported into the directory is a
corresponding "shadow" properties file that contains the metadata for that item.
The naming convention for the "shadow" files is to simply append .metadata.
properties to the file or folder name.

Filing Records

[270]

In this example, there is a single folder and 11 content items, and each item is
associated with a "shadow" file. For the folder, the properties file Air.Quality.
metadata.properties has the following contents:

type=rma:recordFolder
cm\:name=Air Quality
cm\:title=Air Quality
rma\:identifier=2010-0000000001f

The properties file specifies that the content model type for the imported folder be
rma:recordFolder, which is a Records Management Folder. We specify the name
and title of the Folder. We also specify a unique record identifier for it, something
that is generally automatically assigned when the Folder is created via the web
application. The identifier needs to be just that, a unique string.

Similarly, one property file to hold associated metadata is defined for each of the
files. An example of one of the property files is shown as follows:

type=cm:content
aspects=rma:declaredRecord,cm:author
cm\:name=Study on Air Quality in Jakarta, Indonesia
cm\:title=Study on Air Quality in Jakarta, Indonesia
cm\:author=Bulk Import
rma\:originator=Dick Weisinger
rma\:originatingOrganization=Formtek, Inc.
rma\:publicationDate=2010-11-21T10:15:00.000Z
rma\:dateFiled=2010-11-21T10:15:00.000Z
rma\:declaredAt=2010-11-21T10:15:00.000Z
rma\:declaredBy=Dick Weisinger
rma\:identifier=2010-0000000001b

Auto-declaration of records
In this file, we declare the content model type to be cm:content. We also attach two
aspects to the imported content, namely, cm:author and rma:declaredRecord. By
adding the rma:declaredRecord aspect, we are able to simulate the autodeclaration
of this record at the time of import.

We need to be careful here. Before a record can be declared, it is first
necessary that all mandatory metadata be completed. rma:originator,
rma:originatingOrganization, and rma:publicationDate are all mandatory
fields, and because of that, we make sure that we include values for them here.

Similar to the case of the imported Folder, we also specify a unique value for the
rma:identifier here.

Chapter 7

[271]

Metadata and dates
Note that the properties that are datetime values, such as rma:dateFiled, need to
be specified as values formatted using the ISO 8601 time format. The validation of
the time format is very strict and the string needs to be complete in specifying the
date and time down to the millisecond with time zone suffix, as shown in the code
example above.

ISO 8601 is discussed again in more detail in Chapter 10, relative to
creating search queries.

Running the tool
Once the content and properties files are in place, running the Import tool is
straightforward. The path to the local files and folders to be imported is specified, and
the target folder within Alfresco is specified. The import process is quick, and the tool
updates its progress every few seconds. After the import is complete, a results screen
like the following one displays the status and summary of the import job.

In this example, we see that the folder and all 11 content items have been successfully
imported. All of the content items that have all mandatory metadata completed are
marked as having been filed, are declared as records, and have been linked to the
Category disposition schedule:

Filing Records

[272]

Filing by scanning
While paper is being increasingly replaced by the use of electronic files and forms,
many organizations must still deal with large amounts of new paper records on
a day-to-day basis. Many organizations must also deal with large volumes of
historical paper documents and records. Paper is still very much a reality today for
organizations, but there are compelling reasons to convert paper documents and
records into electronic ones.

Being able to bring paper documents into the records system can both improve
work efficiencies and save a tremendous amount of physical space. The costs for
scanning have also been dropping. Both scanner hardware and imaging software
over the last decade have become cheap, fast, and reliable. Because of those
benefits, many organizations use scanning on a regular basis to digitize their paper
documents and records.

Scanning can either be centralized or distributed. The type of approach that is best
for an organization is often a function of the nature of the operation.

For example, some organizations receive large amounts of mail and find that
they save money by using an economy-of-scale approach. These organizations
have centralized their scanning within their mailrooms to capture documents
electronically as soon they are received and opened.

In other industries, particularly professional services and health care, rather
than being centralized, scanners are becoming increasingly distributed, typically
across multiple branch offices. Each office can then scan documents and records
immediately on receipt, enabling quicker processing and updating of the central
repository.

Identify which records to scan
While digitizing records can bring about efficiencies and cost savings, that doesn't
necessarily mean that all documents and records are good candidates for scanning.
Rather than to try to scan everything and to then later cull low-value items from the
repository after they have been entered, it is far more cost-efficient to identify and
simply exclude low-value documents from scanning.

Chapter 7

[273]

Metadata and classification
Once digitized, a scanned record isn't that much different than any other type of
electronic record filed in the system. But capturing document metadata and then
correctly filing the record is typically harder when the record originated as a scanned
image. Ideally, we'd like to be able to automate as much of the scan process as possible.

We've already seen, for example, that the header information from electronic
record types such as PDF and Microsoft Office bring with them a significant
amount of existing metadata. When these Office documents are filed into Alfresco,
the information from their file headers is immediately extracted and mapped to
metadata properties in Alfresco. But this technique usually doesn't work as well
with scanned images because the header of scanned images usually provides much
less information than what is found in the header of office documents.

To help with the input of metadata, OCR (Optical Character Recognition) software
is often used immediately after scanning a document to capture the text contained in
the image. Metadata can then be derived from the scanned image by matching the
OCR text with the regions on the page where the text for metadata fields are known
to be located. Text retrieved from OCR can also be used to assist with the auto-
classification and correct filing of the record.

Another technique often used when scanning images is to include scan separator
pages or barcodes on the pages that the scanner reads. This allows the software to
identify pages that are scanned as belonging to a certain record type or as having
certain properties.

OCR and auto-classification technology has gotten to be very good, and for
many applications, it is at a point where it is good enough for the task at hand.
Unfortunately, for some applications, the error rate of text and barcode recognition
may be too high and considered as not sufficiently reliable. In those cases,
intervention in the scan process may be needed, making it necessary to either
validate the extracted metadata or to manually have to enter data.

Filing scanned images
Alfresco isn't in the scanning business and has left scan integration as a piece for
its technology partners to build. To fill the gap, a number of Alfresco partners
have developed their own solutions to capture and move scanned images and the
associated metadata into the Alfresco repository.

Filing Records

[274]

One company that offers complete scan integration with Alfresco is Kofax Image
Products. Kofax sells computer hardware, software, and services and has a long
history of creating scan software and hardware. Kofax has offered a "release script"
as a third party extension to Alfresco since 2006. The script integrates with Kofax
software to offer a direct path from scanning and OCR to release into the Alfresco
repository.

Information about the Kofax scan solution can be found on the Alfresco
wiki: http://wiki.alfresco.com/wiki/Kofax_Release_Script.
The Kofax solution is by far the best known of the available scan
integrations with Alfresco, but other scan solutions can also be found
on the Alfresco Forge, a resource for storing software and features for
Alfresco that have been contributed by the community: http://forge.
alfresco.com/search/?type_of_search=soft&words=scan

Alfresco offers multiple APIs which make the process of integrating with third-party
software fairly easy. A tight integration between Alfresco and scanning software
can be achieved using the API methods available in the Alfresco Java API and the
Alfresco REST API. Low-volume scan capture can also be achieved using some of
the other techniques that we've already discussed in this chapter, such as Share
multi-filing, CIFS, FTP, or Bulk Import.

Other ways to file
We've seen now that Alfresco is extremely flexible and is able to "ingest" content
from a variety of sources using standard protocols that are available out of the box.
We have not discussed all the possibilities. Inbound e-mail processing, WebDAV,
and third-party browser plugins, for example, are some of the other popular ways
that are also useful for bringing content into the Alfresco repository.

Inbound e-mail processing is a particularly interesting technique
that allows users to send e-mails directly to the repository
to be automatically filed. Using this technique, for example,
important e-mails can be automatically filed by cc-ing the e-mail
to the repository. More information can be found about using
Inbound SMTP e-mail processing on the Alfresco wiki: http://
wiki.alfresco.com/wiki/Inbound_Email_Server_
Configuration.

Besides the many out-of-the-box approaches for capturing content, Alfresco also
offers APIs for Java, PHP, CMIS, REST, SOAP, and JSR-170 that can be used by
developers for integrating Alfresco with other software applications.

Chapter 7

[275]

How does it work?
We will now look at how some of the internals work for filing records within
Share. First, we will look at the Flash-based Upload File dialog for filing electronic
files. Then we will also look at the internals of the dialog form used for registering
non-electronic records.

Internals of electronic file upload
One of the interesting features of Alfresco Share that we discussed earlier in this
chapter is the ability to quickly multi-select many files for upload at one time. Share
has one of the best browser-based multi-file upload implementations available.

Traditional HTML web pages are very awkward when it comes to the handling of
the uploading of files. HTML file uploads are possible because of a feature of the
HTML <form> tag. File uploads in HTML require that the form be declared with
multipart encoding and include input fields of type "file".

There are numerous restrictions for security reasons about how client-side JavaScript
can interact with the input field and the HTML form. By using AJAX and dynamic
HTML, it may be possible to work around some of those restrictions, but in terms of
development, it is convoluted and equivalent to standing on your head.

Share bypasses the limitations of HTML file uploads and instead uses, by default, an
Adobe Flash component to assist with file upload. The result is an upload process
that is fast and elegant.

Let's investigate to see how Flash-based uploads work within Share.

File uploads for the Records Management site is initiated from the File Plan page.
In the "How does it work?" section in the chapter discussing the File Plan, we have
already looked at some of the internals of how that page works.

Filing Records

[276]

We saw earlier that the file documentlibrary.ftl defines the overall layout for
the File Plan page. Within that file, there are three <@region> tags that relate to
file uploads. We've seen in previous chapters that <@region> tags are used to
define reusable components on a Spring-Surf web page. Normally, the file upload
components are hidden and displayed only when the dialogs need to be visible.
The regions are:

Region name Description
dod5015-file-upload Dialog that prompts the user to either file an electronic or

non-electronic document.
dod5015-html-upload Dialog to upload a single file using a standard HTML

multi-part form submit.
dod5015-flash-upload Dialog to select and upload multiple files at one time using

a Flash component.

The files corresponding to the component definitions for these regions can be found
in the directory tomcat\webapps\share\WEB-INF\classes\alfresco\site-
webscripts\org\alfresco\components\upload.

The launch of the upload form is initiated by clicking on the toolbar File Plan button
called Upload. The JavaScript controller for the Toolbar component on the File Plan
is found in the file dod5015-toolbar.get.js. This file is in the tomcat\webapps\
share\components\documentlibrary directory. The event handler for mouse clicks
on the Upload button is also handled in this file.

The onFileUpload method pops up a standard Alfresco pop-up window with three
buttons prompting the user to select from non-electronic file upload, electronic file
upload, or cancel:

onFileUpload: function DLTB_onFileUpload(e, p_obj)
{
 var me = this;

 Alfresco.util.PopupManager.displayPrompt(
 {
 title: this.msg("message.file.type.title"),
 text: this.msg("message.file.type"),
 buttons: [
 {
 text: this.msg("button.electronic"),
 handler: function DLTB_onFileUpload_electronic()
 {
 this.destroy();
 me.onElectronicRecord.call(me);
 },
 isDefault: true

Chapter 7

[277]

 },
 {
 text: this.msg("button.non-electronic"),
 handler: function DLTB_onFileUpload_nonElectronic()
 {
 this.destroy();
 me.onNonElectronicDocument.call(me);
 }
 },
 {
 text: this.msg("button.cancel"),
 handler: function DLTB_onFileUpload_cancel()
 {
 this.destroy();
 }
 }]
 });

}

In this code, we see the method defined to handle the display of the electronic
upload window:

onElectronicRecord: function DLTB_onElectronicRecord()
{
 if (this.fileUpload === null)
 {
 this.fileUpload = Alfresco.getRecordsFileUploadInstance();
 }

 // Show uploader for multiple files
 this.fileUpload.show(
 {
 siteId: this.options.siteId,
 containerId: this.options.containerId,
 uploadDirectory: this.currentPath,
 filter: [],
 mode: this.fileUpload.MODE_MULTI_UPLOAD,
 thumbnails: "doclib",
 onFileUploadComplete:
 {
 fn: this.onFileUploadComplete,
 scope: this
 }
 });
}

Filing Records

[278]

Here we see the toolbar code calling into the code for the upload components.
The call to Alfresco.getRecordsFileUploadInstance() creates Alfresco.
RecordsFileUpload, as defined in the dod5015-fileupload.js file. That
component checks to see whether the user has Flash installed or not, and depending
on that, decides which pop up to display next.

If Flash is installed, the component Alfresco.RecordsFlashUpload is used, which
enables multi-file uploads, otherwise the Alfresco.RecordsHtmlUpload component
is used to upload files on a one-by-one basis.

When Flash is not available, the dialog that is displayed is as follows. We can see that
with this pop up, the user is limited to selecting only a single file at a time for upload:

In the case where the user has Flash installed, then the upload process is based on
Flash and is handled by the two JavaScript files: flash-upload.js and dod5015-
flash-upload.js, which extends from the former file. These are client-side JavaScript
files and are located in the tomcat\webapps\share\components\upload directory.

The File Plan page upload dialog borrows via inheritance much of the same
functionality that is used for file upload by the standard Share site Document
Library. One main difference with the File Plan version of the upload dialog and the
standard version is the additional button at the top of the dialog with a drop-down
menu for selecting a record type.

The values that show up in the Record Type drop-down menu are populated from
a hardcoded JavaScript array that is defined in the file dod5015-flash-upload.get.
js.

Chapter 7

[279]

The record type selector button, the upload button, and the cancel buttons are all
buttons built using YUI. The main panel where files to be uploaded are listed is also
a YUI control, the data table. We discussed previously how the YUI data table is used
in the documentlist component of the File Plan page and lists the records stored at
the current path in the File Plan.

But the magic of the dialog is due to the Flash upload control. The Flash component
is front and center in the dialog. It is displayed as the icon for the button to launch
the file selector dialog, and it behaves differently as compared to standard HTML
components. If we right-click the mouse on the file select button, we'll see some
Flash-specific menu options that aren't available with any of the other buttons on
the screen:

File upload of multiple files in Share is made possible with the YUI
2 Uploader component http://developer.yahoo.com/yui/
uploader/.

The YUI library includes an SWF file that handles the actual Flash upload. On
startup of the Flash upload component, an instance of the YUI uploader object is
constructed. The following code is from the onReady method from the file flash-
upload.js:

// Create and save a reference to the uploader so we can call it later

this.uploader = new YAHOO.widget.Uploader(this.id + "-flashuploader-
 div",
 Alfresco.constants.URL_CONTEXT + "themes/" +
 Alfresco.constants.THEME + "/images/upload-button-sprite.png",
 true);
this.uploader.subscribe("fileSelect", this.onFileSelect, this, true);
this.uploader.subscribe("uploadComplete",this.onUploadComplete, this,
 true);
this.uploader.subscribe("uploadProgress",this.onUploadProgress, this,
 true);

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Filing Records

[280]

this.uploader.subscribe("uploadStart",this.onUploadStart, this,
 true);
this.uploader.subscribe("uploadCancel",this.onUploadCancel, this,
 true);
this.uploader.subscribe("uploadCompleteData",this.
 onUploadCompleteData, this, true);
this.uploader.subscribe("uploadError",this.onUploadError, this,
 true);
this.uploader.subscribe("contentReady", this.onContentReady, this,
 true);

The first argument passed in to the YUI uploader constructor is the HTML
element where the upload button will be located on the pop up, as specified in the
FreeMarker template file dod5015-flash-upload.get.html.ftl. We also note here
that the upload icon for the button is customizable by the Share theme.

Once the uploader control is created, subscriptions to uploader events are created
next, each with a reference to the handler method corresponding to the event.

Clicking on the Flash select file button launches the selection dialog from Flash. After
files have been selected, the onFileSelect handler method is called to process the
results. This handler populates the data table of the upload dialog with the names
of the files selected. The YUI data table was created and initialized in the onReady()
method by making a call to _createEmptyDataTable():

// Definition of the data table column
var myColumnDefs = [
 { key: "id", className:"col-left", resizable: false, formatter:
 formatLeftCell },
 { key: "name", className:"col-center", resizable: false, formatter:
 formatCenterCell },
 { key: "created", className:"col-right", resizable: false,
 formatter: formatRightCell }
];

// The data tables underlying data source.
var myDataSource = new YAHOO.util.DataSource([]);
myDataSource.responseType = YAHOO.util.DataSource.TYPE_JSARRAY;
myDataSource.responseSchema =
{
 fields: ["id", "name", "created", "modified", "type", "size",
 "progress"]
};

YAHOO.widget.DataTable._bStylesheetFallback = !!YAHOO.env.ua.ie;
var dataTableDiv = Dom.get(this.id + "-filelist-table");
this.dataTable = new YAHOO.widget.DataTable(dataTableDiv,
 myColumnDefs, myDataSource,

Chapter 7

[281]

{
 scrollable: true,
 height: "100px",
 width: "620px",
 renderLoopSize: 0,
 MSG_EMPTY: this.msg("label.noFiles")
 });
this.dataTable.subscribe("postRenderEvent", this.onPostRenderEvent,
 this, true);
this.dataTable.subscribe("rowDeleteEvent", this.onRowDeleteEvent,
 this, true);

Here we see that the DataSource is set up to populate the data table from a
JavaScript array that holds the result list of selected files that are returned by the
YUI Uploader component. The fields in the data of the response are specified. The
onFileSelect method then adds rows with the file information to the table.

When we are ready to upload the selected files, the user clicks on the Upload
Files button, and the click handler onUploadButtonClick() calls the _
uploadFromQueue() method to start the upload, looping over and starting the
upload process for each of the files. The files are actually uploaded when the YUI
Flash Uploader posts the file information back to the repository using a URL similar
to http://localhost:8080/share/proxy/alfresco/api/upload;jsessionid=44
06234BCC8F787ADCB202EA369792D8.

Internals of non-electronic record filing
From a developer's perspective, the implementation of the dialog for filing a
non-electronic record is interesting because it demonstrates how to include
an Alfresco form in a pop-up dialog.

We saw above how JavaScript code for the Upload button on the File
Plan page is invoked when the Upload button is pushed. Similarly, the
onNonElectronicDocument method in the dod5015-toolbar.js file controls the
dialog for uploading non-electronic files.

At the start of this method, labels for the title and header are prepared. The variable
destination is also set. The value for destination is the node reference for the
Folder where the non-electronic record is to be placed after it is created:

onNonElectronicDocument: function DLTB_onNonElectronicDocument()
{
 var destination =
 this.modules.docList.doclistMetadata.parent.nodeRef,
 label = "label.new-rma_nonElectronicDocument",

Filing Records

[282]

 msgTitle = this.msg(label + ".title"),
 msgHeader = this.msg(label + ".header");

 // Intercept before dialog show
 var doBeforeDialogShow = function DLTB_onNonElectronicDocument_
doBeforeDialogShow(p_form, p_dialog)
 {
 Dom.get(p_dialog.id + "-dialogTitle").innerHTML = msgTitle;
 Dom.get(p_dialog.id + "-dialogHeader").innerHTML = msgHeader;
 };

After that, the method becomes more interesting. We create the URL that
will make the Form service render the creation form for a record of type
rma:nonElectronicDocument:

 var templateUrl =
 YAHOO.lang.substitute(Alfresco.constants.URL_SERVICECONTEXT +
 "components/form?itemKind={itemKind}&itemId={itemId}&destination
 ={destination}&mode={mode}&submitType={submitType}
 &showCancelButton=true",
 {
 itemKind: "type",
 itemId: "rma:nonElectronicDocument",
 destination: destination,
 mode: "create",
 submitType: "json"
 });

Using the YUI string substitution utility function, the variable templateUrl is
created. If we convert this into a URL and call it directly from the browser, we can
get an idea about how the form in the pop up will look. Using the following URL,
where we have appended the htmlid http://localhost:8080/share/service/
components/form?itemKind=type&itemId=rma:nonElectronicDocument&dest
ination=workspace://SpacesStore/0da4440e-9cea-4af4-b951-18c03342ad6
b&mode=create&submitType=json&showCancelButton=true&htmlid=rm, we see
something like the following screenshot:

Chapter 7

[283]

This is the raw, unformatted content of the form. The next step then is to create the
Alfresco dialog that will actually display as a pop up containing the form. In the
createRecord method, the size of the dialog is set as well as methods for handling
success or failure of the item creation:

 // Using Forms Service, so always create new instance
 var createRecord = new Alfresco.module.SimpleDialog(this.id + "-
 createRecord");

 createRecord.setOptions(
 {
 width: "33em",
 templateUrl: templateUrl,
 actionUrl: null,
 destroyOnHide: true,
 doBeforeDialogShow:
 {
 fn: doBeforeDialogShow,
 scope: this
 },
 onSuccess:
 {
 fn: function DLTB_onNonElectronicDocument_success(response)
 {
 var fileName = response.config.dataObj["prop_cm_name"];
 YAHOO.Bubbling.fire("metadataRefresh",
 {
 highlightFile: fileName
 });
 Alfresco.util.PopupManager.displayMessage(
 {
 text: this.msg("message.new-record.success", fileName)
 });

Filing Records

[284]

 },
 scope: this
 },
 onFailure:
 {
 fn: function DLTB_onNonElectronicDocument_failure(response)
 {
 Alfresco.util.PopupManager.displayMessage(
 {
 text: this.msg("message.new-record.failure")
 });
 },
 scope: this
 }
 }).show();
}

When the form is finally rendered within the dialog, it looks like the following
screenshot:

Very similar logic is used to pop up a form for the Folder creation dialog. See the
method onNewContainer(), also defined in the file dod5015-toolbar.js.

Chapter 7

[285]

Summary
In this chapter, we covered the following topics:

•	 Filing electronic and non-electronic records from Share
•	 Filing records with CIFS and FTP protocols with the help of JLAN
•	 How to go about scanning and bulk loading of documents

In the last part of this chapter, we've looked in detail at how the file upload process
works when filing directly into the File Plan in Share. We also saw how an Alfresco
form is popped up within a standard dialog for collecting metadata needed to file a
non-electronic record.

In the last chapter, we saw how to design and build the File Plan in the Records
Management site. This chapter showed us many different ways to file records within
it. In the next chapter, we will look at how to manage and work with records in the
system.

Managing Records
So far, we have covered how to design and implement a Records Management File
Plan. We've also looked at the many different ways in which records can be filed
into the plan. Now, in this chapter, we will discuss how to manage records once they
have been filed.

Once a record is filed into the File Plan and declared as a record, it is subject to the
instructions of the record Category's disposition schedule under which it is filed.
The possible steps and states that make up a disposition schedule and that define the
lifecycle for a record are described in detail in Chapter 9.

This chapter looks at record features that are common to and available for all or most
lifecycle states that a record can be in. The first part of this chapter covers the details
for how to access, view, and interact with record content and metadata from the user
interface. The latter part of the chapter then describes code internals for how some of
these capabilities have been implemented within Alfresco.

In particular, we will discuss the following in this chapter:

•	 The actions that are available to perform on records
•	 How to trigger a manual event for a record
•	 How to track the audit history for a record
•	 How to create reference links between records

Managing Records

[288]

Records Details
Much of the description in this chapter focuses on record features that are found
on the Records Details page. An abbreviated set of metadata and available actions
for the record is shown on the row for the record in the File Plan. The Details page
for a record is a composite screen that contains a complete listing of all information
for a record, including the links to all possible actions and operations that can be
performed on a record. We can get to the Details page for a record by clicking on the
link to it from the File Plan page:

The Record Details page provides a summary of all available information known
about a record and has links to all possible actions that can be taken on it. This is the
central screen from which a record can be managed.

The Details screen is divided into three main columns. The first column on the screen
provides a preview of the content for the record. The middle column lists the record
Metadata, and the right-most column shows a list of Actions that can be taken on the
record. There are other areas lower down on the page with additional functionality
that include a way for the user to manually trigger events in the steps of the
disposition, to get URL links to file content for the record, and to create relationship
links to other records in the File Plan:

Chapter 8

[289]

Alfresco Flash previewer
The web preview component in the left column of the Record Details page defines a
region in which the content of the record can be visually previewed. It is a bit of an
exaggeration to call the preview component a Universal Viewer, but it does come
close to that. The viewer is capable of viewing a number of different common file
formats and it can be extended to support the viewing of additional file formats.

Natively, the viewer is capable of viewing both Flash SWF files and image formats
like JPEG, PNG, or GIF. Microsoft Office, OpenOffice, and PDF files are also
configured out-of-the-box to be previewed with the viewer by first converting the
files to PDF and then to Flash.

Managing Records

[290]

The use of an embedded viewer in Share means that client machines don't have to
have a viewing application installed to be able to view the file contents of a record.
For example, a client machine running an older version of Microsoft Word may not
have the capability to open a record saved in the newer Word DOCX format, but
within Share, using the viewer, that client would be able to preview and read the
contents of the DOCX file.

The top of the viewer has a header area that displays the icon of a record alongside
the name of the record being viewed. Below that, there is a toolbar with controls for
the viewing of the file:

At the left of the toolbar, there are controls to change the zoom level. Small
increments for zoom in and zoom out are controlled by clicking on the "+" and "-"
buttons. The zoom setting can also be controlled by the slider or by specifying a
zoom percentage or display factor like Fit Width from the drop-down menu.

For multi-page documents, there are controls to go to the next or previous pages and
to jump to a specific page. The Fullscreen button enlarges the view and displays it
using the entire screen. Maximize enlarges the view to display it within the browser
window.

Image panning and positioning within the viewer can be done by using the
scrollbar or by left-clicking and dragging the image with the mouse. A print
option is available from an item on the right-mouse click menu.

Record Metadata
The centre column of the Record Details displays the metadata for the record.
There are a lot of metadata properties that are stored with each record. To make
it easier to locate specific properties, there is a grouping of the metadata, and each
group has a label.

Chapter 8

[291]

The first metadata group is Identification and Status. It contains the Name, Title,
and Description of the record. It shows the Unique Record Identifier for the record,
and the unique identifier for the record Category to which the record belongs.
Additional Metadata items track whether the record has been Declared, when it was
Declared, and who Declared it:

The General group for metadata tracks the Mimetype and the Size of the file
content, as well as who Created or last made any modifications to the record.
Additional metadata for the record is listed under groups like Record, Security,
Vital Record Information, and Disposition.

The Record group contains the metadata fields Location,
Media Type, and Format, all of which are especially useful for
managing non-electronic records.

Managing Records

[292]

Record actions
In the right-most column of the Record Details page, there is a list of Actions that are
available to perform on the record. The list displayed is dynamic and changes based
on the state of the record. For example, options like Declare as Record or Undo
Cutoff are only displayed when the record is in a state where that action is possible:

Download action
The Download action does just that. Clicking on this action will cause the file content
for the record to be downloaded to the user's desktop.

Edit Metadata
This action displays the Edit form matching the content type for the record. For
example, if the record has a content type of cm:content, the Edit form associated
with the type cm:content will be displayed to allow the editing of the metadata.

Chapter 8

[293]

Items identified with asterisks are required fields. Certain fields contain data that is
not meant to change and are grayed out and non-selectable:

Copy record
Clicking on the Copy to action will pop up a repository directory browser that
allows a copy of the record to be filed to any Folder within the File Plan. The name
of the new record will start with the words "Copy of" and end with the name of the
record being copied.

Managing Records

[294]

Only a single copy of a record can be placed in a Folder without
first changing the name of the first copy. It isn't possible to have two
records in the same Folder with the same name.

Move record
Clicking on the Move to action pops up a dialog to browse to a new Folder for
where the record will be moved. The record is removed from the original location
and moved to the new location.

File record
Clicking on the File to action pops up a dialog to identify a new Folder for where
the record will be filed. A reference to the record is placed in the new Folder. After
this operation, the record will basically be in two locations. Deleting the record from
either of the locations causes the record to be removed from both of the locations.

Chapter 8

[295]

After filing the record, a clip status icon is displayed on the upper-left next to the
checkbox for selection. The status indicates that one record is filed in multiple
Folders of the File Plan:

Delete record
Clicking on the Delete action permanently removes the item from the File Plan. Note
that this action differs from Destroy that removes only the file content from a record
as part of the final step of a disposition schedule. We will discuss Destroy more in
the next chapter.

Audit log
At any point in the lifecycle of a record, an audit log is available that shows a
detailed history of all activities for the record. The record audit log can help to
answer questions that may come up such as which users have been involved with
the record and when specific lifecycle events for the record have occurred. The audit
log also provides information that can confirm whether activities in the records
system are both effective and compliant with record policies.

The View Audit Log action creates and pops up a dialog containing a detailed
historical report for the record. The report includes very detailed and granular
information about every change that has ever been made to the record.

Each entry in the audit log includes a timestamp for when the change was made, the
user that made the change, and the type of change or event that occurred. If the event
involved the change of any metadata, the original values and the changed values for
the metadata are noted in the report.

Managing Records

[296]

By clicking on the File as Record button on the dialog, the audit report for the record
itself can be captured as a record that can then be filed within the File Plan. The
report is saved in HTML file format. Clicking on the Export button at the top of the
dialog enables the audit report to be downloaded in HTML format:

The Audit log, discussed here, provides very granular information
about any changes that have occurred to a specific record. Alfresco also
provides a tool included with the Records Management Console, also
called Audit, which can create a very detailed report showing all activities
and actions that have occurred throughout the records system. The Audit
tool is described later in Chapter 10.

Chapter 8

[297]

Links
Below the Actions component is a panel containing the Share component. This
is a standard component that is also used in the Share Document Library. The
component lists three URL links in fields that can be easily copied from and pasted
to. The URLs allow record content and metadata to be easily shared with others.

The first link in the component is the Download File URL. Referencing this link
causes the content for the record to be downloaded as a file. The second link is the
Document URL. It is similar to the first link, but if the browser is capable of viewing
the file format type, the content will be displayed in the browser; otherwise it is
downloaded as a file. The third link is the This Page URL. This is the URL to the
record details page.

Trying to access any of these three URLs will require the user to first authenticate
himself/herself before access to any content will be allowed.

Events
Below the Flash preview panel on the Details page for the record is an area that
displays any Events that are currently available to be manually triggered for this
record. Remember that each step of a disposition schedule is actionable after either
the expiration of a time deadline or by the manual triggering of an event.

Events are triggered manually by a user needing to click on a button to indicate that
an event has occurred. The location of the event trigger buttons differs depending
on how the disposition in the record Category was applied. If the disposition was
applied at the Folder level, the manual event trigger buttons will be available on
the Details page for the Folder. If the disposition was applied at the record level,
the event trigger buttons are available on the Record Details page. The buttons that
we see on this page are the ones available from the disposition being applied at the
record level.

Managing Records

[298]

The event buttons that apply to a particular state will be grouped together based
on whether or not the event has been marked as completed. After clicking on
completion, the event is moved to the Completed group. If there are multiple
possible events, it takes only a single one of them to complete in order to make the
action available. Some actions, like cutoff, will be executed by the system. Other
actions, like destruction, require a user to intervene, but will become available from
the Share user interface:

We'll see in Chapter 12 how custom events can be created with a tool that
is part of the Records Management Console.

References
Often it is useful to create references or relationships between records. A reference is
a link that relates one record to another. Clicking on the link will retrieve and view
the related record.

In the lower right of the Details page, there is a component for tracking references
from this record and to other records in the File Plan. It is especially useful for
tracking, for instance, reference links to superseded or obsolete versions of the
current record.

To attach references, click on the Manage button on the References component:

Chapter 8

[299]

Then, from the next screen, select New Reference:

A screen containing a standard Alfresco form will then be displayed. From this
screen, it is possible to name the reference, pick another record to reference, and to
mark the type of reference.

Available reference types include:

•	 SupersededBy / Supersedes
•	 ObsoletedBy / Obsoletes
•	 Supporting Documentation / Supported Documentation
•	 VersionedBy / Versions
•	 Rendition
•	 Cross-Reference

Managing Records

[300]

After creating the reference, you will then see the new reference show up in the list:

How does it work?
We've now looked at the functionality of the details page for records and the Series,
Category, and Folder containers. In this "How does it work?" section, we'll investigate
in greater detail how some of the internals for the record Details page work.

The Details page
To investigate the Details page, let's first start with the URL for the page. The format
for the URL is something like this:

http://localhost:8080/share/page/site/rm/document-
details?nodeRef=workspace://SpacesStore/3d3a5066-59bf-45cd-b025-
4e5484c9b9af

We can see that the pageid used within this URL is document-details. We can then
look up the page description file and find that it is the file tomcat\webapps\share\
WEB-INF\classes\alfresco\site-data\pages\document-details.xml.

The page descriptor file references the <template-instance> as document-details.
If we look that up, we find the file tomcat\webapps\share\WEB-INF\classes\
alfresco\site-data\template-instances\document-details.xml.

From the template instance descriptor file, we find that the template path is org/
alfresco/document-details. From that, we locate the FreeMarker and JavaScript
template files for the page. The files are document-details.ftl and document-
details.js in the directory tomcat\webapps\share\WEB-INF\classes\alfresco\
templates\org\alfresco.

Chapter 8

[301]

The JavaScript controller for the Details page
The JavaScript controller file document-details.js for the Details page is quite
short. It relies heavily on the code from the file documentlibrary.js that it imports.
Recall that we have already reviewed the file documentlibrary.js when we
discussed the Document Library.

The file documentlibrary.js has code that recognizes that we are running
in the Records Management site. That code sets the variable doclibType to
the string "dod5015" and adds it to the model. The file document-details.
js also stores the variable jsType in the model with the value of "Alfresco.
RecordsDocumentDetails":

<import
 resource="classpath:/alfresco/templates/org/alfresco/
 documentlibrary.js">
function toJSType(doclibType)
{
 var type = "Alfresco.DocumentDetails";
 switch (String(doclibType))
 {
 case "dod5015":
 type = "Alfresco.RecordsDocumentDetails";
 break;
 }
 return type;

}

model.jsType = toJSType(doclibType);

The FreeMarker template for the Details page
Now let's look at the FreeMarker template file. The layout for the Details page is
somewhat similar to the Document Library and Category Details pages that we've
looked at previously. The document-details.ftl page is also used by the standard
document Details page by sites other than the Records Management site. When we
examine the document-details.ftl, we can see at the beginning of the file that
there are client-side JavaScript files imported.

Included files for the Details page
The files imported include:

•	 components/blog/postview.css

•	 templates/document-details/document-details.css

•	 components/blog/blogdiscussions-common.js

Managing Records

[302]

•	 components/blog/blog-common.js

•	 modules/documentlibrary/doclib-actions.js

•	 templates/document-details/document-details.js

•	 templates/document-details/${doclibType}document-details.js

There are a number of files related to blog entries referenced, but these files are
outside the context of the record Details page. The four main include files of
interest are:

•	 templates\document-details\document-details.js

•	 templates\document-details\dod5015-document-details.js

•	 templates\document-details\document-details.css

•	 modules\documentlibrary\doclib-actions.js

Initialize the RecordsDocumentDetails object
Skipping to the bottom of the file document-details.ftl, we see the following
code that will be executed when the page is loaded on the client:

 <script type="text/javascript">//<![CDATA[
 new ${jsType}().setOptions(
 {
 nodeRef: new Alfresco.util.NodeRef("${url.args.nodeRef}"),
 siteId: "${page.url.templateArgs.site!""}",
 rootNode: new Alfresco.util.NodeRef("${rootNode}")
 });

 //]]></script>

We have just seen when we discussed the JavaScript controller that the variable
jsType evaluates to Alfresco.RecordsDocumentDetails. An object of this type
is instantiated on page load. The Alfresco.RecordsDocumentDetails object is
defined in the file dod5015-document-details.js, which we just saw included
on this page.

This new object is created with elements initialized for nodeRef, siteId, and
rootNode members. The nodeRef is passed in from the URL.

Chapter 8

[303]

FreeMarker components on the Details page
In the main body of the web page, as defined by FreeMarker, we can see a number of
components defined by the use of the <@region> tags:

<@templateBody>
 <div id="alf-hd">
 <@region id="header" scope="global" protected=true />
 <@region id=doclibType + "title" scope="template" protected=true
 />
 <@region id=doclibType + "navigation" scope="template"
 protected=true />
 </div>
 <div id="bd">
 <@region id=doclibType + "actions-common" scope="template"
 protected=true />
 <@region id=doclibType + "actions" scope="template"
 protected=true />
 <@region id=doclibType + "path" scope="template" protected=true
 />

 <div class="yui-g">
 <div class="yui-g first">
 <#if (config.scoped['DocumentDetails']['document-
 details'].getChildValue('display-web-preview') == "true")>
 <@region id=doclibType + "web-preview" scope="template"
 protected=true />
 </#if>
 <#if doclibType?starts_with("dod5015")>
 <@region id=doclibType + "events" scope="template"
 protected=true />
 <#else>
 <div class="document-details-comments">
 <@region id=doclibType + "comments" scope="template"
 protected=true />
 <@region id=doclibType + "createcomment" scope="template"
 protected=true />
 </div>
 </#if>
 </div>
 <div class="yui-g">
 <div class="yui-u first">
 <@region id=doclibType + "document-metadata-header"
 scope="template" protected=true />
 <@region id=doclibType + "document-metadata"
 scope="template" protected=true />

Managing Records

[304]

 <@region id=doclibType + "document-info" scope="template"
 protected=true />
 <@region id=doclibType + "document-versions"
 scope="template" protected=true />
 </div>
 <div class="yui-u">
 <@region id=doclibType + "document-actions"
 scope="template" protected=true />
 <@region id=doclibType + "document-links" scope="template"
 protected=true />
 <#if doclibType?starts_with("dod5015")>
 <@region id=doclibType + "document-references"
 scope="template" protected=true />
 </#if>
 </div>
 </div>
 </div>

 <@region id="html-upload" scope="template" protected=true />
 <@region id="flash-upload" scope="template" protected=true />
 <@region id="file-upload" scope="template" protected=true />
 </div>
 …

</@>

Based on the Region ID and Scope, we can trace through descriptor files to find the
following summary of region tags, excluding the regions for the upload dialogs that
are not available from the context of the records Details page. Note that the regions
corresponding to document comments are not available on the records Details page:

Region Scope URL
Header global /components/header

dod5015-title template /components/title/collaboration-
title

dod5015-navigation template /components/navigation/
collaboration-navigation

dod5015-actions-
common

template /components/documentlibrary/
dod5015/actions-common

dod5015-actions template N/A

dod5015-path template /components/document-details/
dod5015/path

dod5015-web-preview template /components/preview/web-preview

dod5015-events template /components/fileplan/events

Chapter 8

[305]

Region Scope URL
dod5015-document-
metadata-header

template /components/document-details/
document-metadata-header

dod5015-document-
metadata

template /components/form

dod5015-document-
info

template /components/document-details/
document-info

dod5015-document-
actions

template /components/document-details/
dod5015/document-actions

dod5015-document-
links

template /components/document-details/
document-links

dod5015-document-
references

template /components/document-details/
dod5015/document-references

Footer global /components/footer

The region dod5015-actions-common is used to pull in some additional include
files for use on the page. The file tomcat\webapps\share\WEB-INF\classes\
alfresco\site-webscripts\org\alfresco\components\documentlibrary\
dod5015-actions-common.get.header.xml has the following contents:

<#include "../component.head.inc">
<!-- DoD 5015.2 Actions -->
<@script type="text/javascript"
 src="${page.url.context}/components/documentlibrary/actions.js">
 </@script>
<@script type="text/javascript"
 src="${page.url.context}/components/documentlibrary/dod5015-
 actions.js"></@script>
<!-- Simple Dialog -->
<@script type="text/javascript"
 src="${page.url.context}/modules/simple-dialog.js"></@script>
<!-- DoD 5015.2 Copy-To, Move-To, File-To -->
<@link rel="stylesheet" type="text/css"
 href="${page.url.context}/modules/documentlibrary/site-folder.css"
 />
<@script type="text/javascript"
 src="${page.url.context}/modules/documentlibrary/site-
 folder.js"></@script>
<@script type="text/javascript"
 src="${page.url.context}/modules/documentlibrary/dod5015-copy-move-
 file-to.js"></@script>
<!-- DoD 5015.2 File Transfer Report -->
<@script type="text/javascript"
 src="${page.url.context}/modules/documentlibrary/dod5015-file-
 transfer-report.js"></@script>

Managing Records

[306]

We can then see where on the final rendered page the component for each region
will be placed, as shown in the following screenshot:

Let's now look in more detail at some of the page components. We don't have
space to go through all of them, but let's pick a few that have some interesting
characteristics.

Chapter 8

[307]

The web preview component
The files that define the web preview component can be found in the directory
tomcat\webapps\share\WEB-INF\classes\alfresco\siter-webscritps\org\
alfresco\components\preview.

Web preview include files
The file web-preview.get.head.ftl defines the additional files to be included to
support the display of the page on the client:

<#include "../component.head.inc">
<@link rel="stylesheet" type="text/css"
 href="${page.url.context}/components/preview/web-preview.css" />
<@script type="text/javascript"
 src="${page.url.context}/components/preview/web-
 preview.js"></@script>
<@script type="text/javascript"
 src="${page.url.context}/js/flash/extMouseWheel.js"></@script>

The web preview controller JavaScript
The file web-preview.js is run when both the page and the web preview
component are initialized. The code in this file checks to make sure that a valid
node reference was passed in:

 // Check mandatory parameters
 var nodeRef = args.nodeRef;
 if (nodeRef == null || nodeRef.length == 0)
 {
 status.code = 400;
 status.message = "Parameter 'nodeRef' is missing.";
 status.redirect = true;
 }

Next, it attempts to find the metadata associated with this record from the node
reference:

 var json = remote.call("/api/metadata?nodeRef=" + nodeRef);
 if (json != null && json.toString().trim().length() != 0)
 {
 var node = {},
 n = eval('(' + json + ')');

This will make a remote call into the Alfresco repository to retrieve metadata for the
current node. The URL for the service request will be of the form:

http://localhost:8080/alfresco/service/api/

Managing Records

[308]

metadata?nodeRef=workspace://SpacesStore/3d3a5066-59bf-45cd-b025-
4e5484c9b9af.

Next, the code tries to extract the cm:content property from all object metadata for
the record:

mcns = "{http://www.alfresco.org/model/content/1.0}",
content = n.properties[mcns + "content"];

The value for the content variable contains a string of concatenated properties for the
stored file. For example, the information will look as follows:

contentUrl=store://2010/9/1/12/3/08ac3a0d-0ccf-44f8-a65d-
1ef4666076d5.bin|
mimetype=application/pdf|
size=108932|
encoding=utf-8|
locale=en_US_

Embedded in this string, the contentUrl refers to the directory where the Alfresco
content store is located. Also encoded in the string are values for the mimetype, size,
encoding, and locale.

The JavaScript code then continues to check to see if an image or Flash preview of the
document is available for viewing:

// Call repo for available previews
json = remote.call("/api/node/" + nodeRef.replace(":/", "") +
 "/content/thumbnaildefinitions");
var previews = eval('(' + json + ')');

A call to the Alfresco repository is made here to see what types of renditions are
available for this record. It does this by using the following web service URL:

http://localhost:8080/alfresco/service/api/node/workspace/
SpacesStore/3d3a5066-59bf-45cd-b025-4e5484c9b9af/content/
thumbnaildefinitions

In this example, the response to the web service JSON looks like the following:

["doclib",
 "webpreview",
 "avatar",
 "medium",
 "imgpreview"
]

Chapter 8

[309]

We see that a web preview rendition for this document is already available. This
isn't the first time that this document has been viewed on the Details page. The first
time that someone accesses the Details page for the record, the Flash web preview
file is created.

The rest of the web-preview.js controller file constructs a node object to be returned
as part of the model.

The web preview FreeMarker template
The file web-preview.get.html.ftl contains the markup that describes the
display of the web preview component. The top of this file contains JavaScript run
on the client when the web preview component is loaded that creates an Alfresco.
WebPreview object:

<#if (node?exists)>
<script type="text/javascript">//<![CDATA[
new Alfresco.WebPreview("${args.htmlid}").setOptions(
{
 nodeRef: "${node.nodeRef}",
 name: "${node.name?js_string}",
 icon: "${node.icon}",
 mimeType: "${node.mimeType}",
 previews: [<#list node.previews as p>"${p}"<#if (p_has_next)>,
 </#if></#list>],
 size: "${node.size}"
}).setMessages(
 ${messages}
);
//]]></script>
</#if>

The remainder of the file is the FreeMarker markup for the layout of the component:

<div class="web-preview shadow">
 <div class="hd">
 <div class="title">
 <h4>
 <img id="${args.htmlid}-title-img"
 src="${url.context}/components/images/generic-file-32.png"
 alt="File" />

 </h4>
 </div>
 </div>
 <div class="bd">

Managing Records

[310]

 <div id="${args.htmlid}-shadow-swf-div" class="preview-swf">
 <div id="${args.htmlid}-swfPlayerMessage-
 div">${msg("label.preparingPreviewer")}</div>
 </div>
 </div>
</div>

Client-side JavaScript
On the client, the JavaScript file that provides the dynamics for the web preview
component is the file components\preview\web-preview.js. This JavaScript file
contains the definition of the object Alfresco.WebPreview.

The JavaScript will check to see if the content is already an image or Flash SWF
format that can be viewed as-is or whether a Flash rendition is needed to be viewed.
The previewer is capable of viewing both images, Flash or FLEX, so documents with
content of this file format type need not have their content converted to Flash in
order to preview them.

Alfresco converts office documents, in either Microsoft Office or OpenOffice formats,
to PDF using the OpenOffice SDK. Those intermediate PDF files are then converted
to Flash SWF objects using the PDF2SWF utility that is part of SWFTools. In the same
way, if there is a file format that needs to be previewable, it can be added if there is a
tool that exists to convert the file into either PDF or SWF formats.

A service call is then made back to the Alfresco repository to retrieve the Flash
preview content. If the preview doesn't already exist, it will be generated. An
example of what that service call looks like is the following:

http://localhost:8080/share/proxy/alfresco/api/node/workspace/
SpacesStore/3d3a5066-59bf-45cd-b025-4e5484c9b9af/content/thumbnails/
webpreview?c=force&noCacheToken=12833886

The actual web preview is enabled by a Flash SWF file that is embedded in the page.

The ActionScript source code for the Alfresco SWF previewer
component is not available in the WAR file of a standard
Alfresco installation. It can be found in the Alfresco Subversion
source code repository under root\projects\slingshot\
source\as\webpreviewer.
Alfresco community source code can be downloaded from
this Subversion URL: http://svn.alfresco.com/repos/
alfresco-open-mirror/alfresco/HEAD/.

Chapter 8

[311]

The software that detects and checks for a valid version of the Flash player in the
browser and embeds the Alfresco Flash previewer object on the web page is called
SWFObject.

Alfresco uses SWFObject 1.5 that is part of YUI 2.0. SWFObject is written
by Geoff Stearns and released under the MIT license. The SWFObject
JavaScript Flash Player is hosted on the code.google.com website at
http://code.google.com/p/swfobject/.

The code in the file web-preview.js that embeds the previewer looks like this:

var so = new YAHOO.deconcept.SWFObject(Alfresco.constants.URL_CONTEXT
 + "components/preview/WebPreviewer.swf", swfId, "100%", "100%",
 "9.0.45");
so.addVariable("fileName", this.options.name);
so.addVariable("paging", previewCtx.paging);
so.addVariable("url", previewCtx.url);
so.addVariable("jsCallback", "Alfresco.util.ComponentManager.get('" +
 this.id + "').onWebPreviewerEvent");
so.addVariable("jsLogger", "Alfresco.util.ComponentManager.get('" +
 this.id + "').onWebPreviewerLogging");
so.addVariable("i18n_actualSize", this.msg("preview.actualSize"));
so.addVariable("i18n_fitPage", this.msg("preview.fitPage"));
so.addVariable("i18n_fitWidth", this.msg("preview.fitWidth"));
so.addVariable("i18n_fitHeight", this.msg("preview.fitHeight"));
so.addVariable("i18n_fullscreen", this.msg("preview.fullscreen"));
so.addVariable("i18n_fullwindow", this.msg("preview.fullwindow"));
so.addVariable("i18n_fullwindow_escape",
 this.msg("preview.fullwindowEscape"));
so.addVariable("i18n_page", this.msg("preview.page"));
so.addVariable("i18n_pageOf", this.msg("preview.pageOf"));
so.addVariable("show_fullscreen_button", true);
so.addVariable("show_fullwindow_button", true);
so.addParam("allowScriptAccess", "sameDomain");

so.addParam("allowFullScreen", "true");

so.addParam("wmode", "transparent");

The code embeds the Flash control into the web page and passes into it the
filename, that is, the record name in the repository. It also sets a flag to indicate
whether the file is multi-page and requires paging. The url is a path to the Flash or
image rendition of the record to view. Text labels are set as well as some parameters
to specify how the component will be viewed, such as with or without the Full
Window mode.

Managing Records

[312]

The metadata component
The dod5015-metadata component is interesting in that it simply displays the
standard metadata form for the record. From the file tomcat\webapps\share\WEB-
INF\classes\alfresco\site-data\components\template.dod5015-document-
metadata.document-details.xml, we see that the standard form component is
parameterized with properties that define the itemId, formId, and mode:

<?xml version='1.0' encoding='UTF-8'?>
<component>
 <scope>template</scope>
 <region-id>dod5015-document-info</region-id>
 <source-id>document-details</source-id>
 <url>/components/form</url>
 <properties>
 <itemKind>node</itemKind>
 <itemId>{nodeRef}</itemId>
 <formId>rm</formId>
 <mode>view</mode>
 </properties>
</component>

The form identified with the tag <form id="rm"> and of the document type
cm:content is defined in the file tomcat\webapps\share\WEB-INF\classes\
alfresco\dod-5015-form-config.xml.

The events component
The dod5015-events component is defined by the files tomcat\webapps\share\
WEB-INF\classes\alfresco\site-webscripts\org\alfresco\components\
fileplan\events.get.*. The file events.get.head.ftl includes the client-side
JavaScript file components\fileplan\events.js.

The file events.get.html.ftl defines the FreeMarker layout for the component.
The layout is divided into three <div> components, one to show the events that have
completed, one to list events that have not yet completed, and another for a pop-up
dialog that is normally hidden but pops up to collect information from the user when
the event is manually completed.

There is no JavaScript controller file for this component. Most of the work for this
component is done by the client-side JavaScript file events.js.

We can see in the code in the events.js file that a data webscript is called to find
the next available events for this record:

url: Alfresco.constants.PROXY_URI_RELATIVE + "api/node/" +
 this.options.nodeRef.uri + "/nextdispositionaction"

Chapter 8

[313]

This will resolve to a URL of the form:

http://localhost:8080/share/proxy/alfresco/api/node/
workspace/SpacesStore/0ee56658-9518-4b2e-a679-8c2fd8aa0b59/
nextdispositionaction

In this example, the JSON webscript response looks like the following:

{
 "data":
 {
 "url":
 "\/alfresco\/s\/api\/node\/workspace\/SpacesStore\/0ee56658-
 9518-4b2e-a679-8c2fd8aa0b59\/nextdispositionaction",
 "name": "destroy",
 "label": "Destroy",
 "eventsEligible": false,
 "asOf": "2020-10-01T12:23:19.828-07:00",
 "events":
 [
 {
 "name": "obsolete",
 "label": "Obsolete",
 "complete": false,
 "automatic": true
 },
 {
 "name": "no_longer_needed",
 "label": "No longer needed",
 "complete": false,
 "automatic": false
 },
 {
 "name": "superseded",
 "label": "Superseded",
 "complete": false,
 "automatic": true
 }
]
 }
}

Managing Records

[314]

The JavaScript code then iterates through these events to render the Events
component:

The references component
This component provides more good examples on how to build Alfresco pages using
Spring-Surf. Multiple new pages are used to implement this functionality. Clicking
on the Manage button of this component will bring up a new page with pageid
rmreferences. Then, clicking on the New References button of that page brings up
yet another page with pageid new-rmreference.

In a similar way to that described above and in earlier chapters, it is possible to
trace through the chain of files from the pageid's to the components, JavaScript
controller code, and FreeMarker templates for these pages to see how they have
been constructed.

Chapter 8

[315]

Summary
In this chapter, we covered the following concepts:

•	 How to perform common operations on records like file, copy, move, and
delete

•	 How to see the audit history for a record
•	 How to add links from one record to other records that have been

superseded or obsoleted
•	 How to manually trigger an event on a record

Then, at the end of this chapter, in a "How does it work?" section, we analyzed the
record Details page, breaking it into its constituent page components, and looked
in detail at how some of the components work. One unique capability of Alfresco
that we spent some time discussing is the built-in Flash viewer. We also saw that
the metadata component on the Details page is nothing other than an embedded
standard Alfresco form.

This chapter has focused on how to manage records of the File Plan once they
have been filed. In the next chapter, we will follow a record all the way through
its lifecycle.

Following the Lifecycle
of a Record

We've looked in detail at how to create the disposition schedule that defines the
lifecycle instructions for a record. This chapter will show how those instructions
are carried out and managed during an actual record lifecycle.

In this chapter, we will discuss:

•	 How an undeclared record is first filed and then declared
•	 What the steps are in transferring a record to another location
•	 How accession is a special type of transfer and how it differs from

a standard transfer
•	 The difference between destruction and deletion of records
•	 How to freeze documents requested for legal purposes

In the last part of the chapter, we will again go into some developer specifics on
how the Alfresco Records Management system is built in a section called "How does
it work?". The information is useful to developers (or those who are just curious)
for understanding how the Share Records Management system can potentially be
modified or extended to meet the requirements of your organization.

We discuss in detail how to configure some background processes that are
responsible for sending out notification e-mails and also for automatically
triggering time-based events that are defined in File Plan disposition schedules.

We will look at how File Plan Holds and Transfers are implemented, and we also
will see how transfer reports are automatically generated and filed.

Following the Lifecycle of a Record

[318]

Undeclared records
When a document is first filed into the File Plan, it is placed into a Folder of the plan
and is assigned a unique record identifier and marked as an undeclared record.

When filing a document into the File Plan, it is also assigned a number of aspects that
are specific to managing records, such as the rma:record aspect. These aspects bring
along with them many records-specific properties.

However, since undeclared records, by definition, have not yet been declared, the
disposition schedule of the Category that the record is filed under doesn't yet affect
it. You might think that it's possible to upload a new version of file content for an
undeclared record, much like you can for a standard document, but that isn't allowed.

Undeclared records can also potentially be blockers. In the case of a disposition
schedule that is applied at the Folder level, if an undeclared record exists in a Folder
with that disposition, the Folder's disposition steps will be blocked. For example,
even though a folder may be due for cutoff, it can't occur until only declared records
are filed in the Folder.

Specifying mandatory metadata
Prior to being declared as a record, it is first required that all mandatory metadata
for an undeclared record be completed. This is a requirement of the DoD 5015.2
specification, and the reasoning behind doing it is understandable. It wouldn't be a
good idea to allow records to be declared when some critical pieces of information
about them are still missing.

The DoD 5015.2 specification can be found on-line at http://www.
js.pentagon.mil/whs/directives/corres/pdf/501502std.
pdf. We will also discuss it in more detail in Appendix A (which is
available for download from the Packt Publishing website) of this book.

However, unfortunately, the need to specify mandatory metadata can complicate the
filing process. Because of the need to first specify metadata, there are, in effect, three
steps needed to file and declare a record: first file the document in a File Plan Folder,
complete the mandatory metadata, and then declare it as a record.

If there are many records that need to be filed, it is sometimes desirable to be able to
automate the process of filing records. In Chapter 7, we have already looked at the
Bulk Import method that enables files to be uploaded, metadata to be automatically
attached, and for the document to be declared as a record, all in a single step.

Chapter 9

[319]

A good solution for automating the filing process would be to be able to add an
Alfresco rule to the File Plan Folder. The rule could run a script when an item enters
the folder that could auto-populate mandatory fields and then declare the item as a
record. However, we have our hands tied here a bit because, as of Alfresco 3.3, rules
for Records Management containers have been disabled. The workflow chapter has
been deleted.

We've already seen when we looked at the content model that, by default, there
are a number of mandatory properties in the rma:record aspect.

At least three of the mandatory properties for the record are not automatically
populated at the time of filing. These mandatory properties include the
rma:originator, rma:publicationDate, and the rma:originatingOrganization.
These fields are specified by the DoD-5015 specification as mandatory.

However, if your organization does not need to comply with DoD-5015 to the letter
and has no particular need for these metadata fields, one possibility is to simply
override the rma content model and mark these fields as non-mandatory. This can
simplify the process of filing followed immediately by declaration of the record.

Declaring the record
Once the item has been filed and all mandatory metadata has been specified for it,
it is possible to declare it as a record. Not until the mandatory metadata has been
completed does the Declare action become an option:

To declare the record, we select the Declare as Record action on the item.
Immediately after declaring the item, the Undeclared Record indicator on the
record is removed, and a new action appears in the list: Undeclare Record.

Following the Lifecycle of a Record

[320]

Record review
We saw that a property of record Categories is the specification of a review period
for each record that is filed under the Category. All vital records require a review.
Other types of records can optionally be specified for review.

When the Category is created, a review date, relative to the filing of the record, is
specified, such as at the end of the month, quarter, or year.

Once a record comes up for review, an action for marking the record as Reviewed
becomes available. Clicking on the Reviewed action marks the review as having
occurred in the audit log of the record:

It is also possible to change or update the date of review for a record. After the
review of the record, if it is desired to schedule another periodic review, the review
date can be updated to reflect the date of the next review:

Chapter 9

[321]

Closing a Folder
Prior to Folder cutoff, a Folder can be marked as closed. It is not possible to file
records to a closed Folder. Filing to the Folder is only possible again if the Folder
is re-opened. When a Folder is cutoff, it is automatically closed.

Cutoff
Cutoff is the start date from which the retention period for a record begins. When
cutoff is initiated from a time-based criterion, records and folders designated for
cutoff are automatically marked as cutoff with no user intervention.

When cutoff is initiated by a manual event, the Cutoff action for the item
immediately becomes available. The user can then either manually cut off the item
by clicking on the Cutoff action or wait until the background cron job later identifies
the item as due for cutoff and then automatically applies cutoff. As we'll see later in
this chapter, the background cron job runs, by default, every 15 minutes:

Once the item is cutoff, an action to manually undo the cutoff becomes available.
When a folder is cutoff, it is also closed to any new filings. Items that are cutoff
are marked with a small status icon that shows a filled red circle enclosing a white
horizontal bar.

Transfer
Transfer is the process of moving records from the system to another location. It is a
process that, once kicked off, actually includes a number of substeps.

Consider a records Category with the following disposition schedule. After
cutoff, records in this Category are to be retained for two years, then transferred
to a long-term storage facility, and then, ultimately destroyed:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Following the Lifecycle of a Record

[322]

Let's see what happens in the File Plan after the record is cut off and the retention
period expires. At the end of the retention period, the following action labelled
Transfer becomes available for the record:

When we click on the Transfer link, we initiate the steps for the transfer to start.
After doing that, if PDF files were part of the transfer bundle, the first thing that is
presented to the user is a pop-up dialog that asks to check that the PDF files in the
transfer bundle include an embeddable font:

If fonts are not embedded within the PDF file, then when viewed, Adobe Acrobat
or Reader will try to make a best guess on which available alternative font can
substituted for the font that was originally used when the file was created. If the
same font isn't available, the look and layout of the document might be significantly
different from what was intended.

By using Adobe Acrobat, it is possible to see if the fonts used in the file
are embedded or not. In Acrobat, bring up the Document Properties
dialog by selecting the File | Statistics… menu item. Then in the Fonts
tab, verify that all fonts listed are marked as embedded.

Once the transfer process begins, the record or folder selected for transfer is marked
with a green arrow transfer icon. The transfer is still "in process" at this point. There
are more steps before it is completed. In our example, we see in the File Plan that the
record is marked with both cutoff and the transfer icons:

Chapter 9

[323]

On the File Plan page, along the left-hand panel in a section labelled File Plan,
there is an entry for Transfers. If we click on this link, we will get a list of all
Transfer bundles that are in progress:

If we click on the transfer link, which in this example is Transfer0000012857, we
will be taken to another screen that shows the records that are to be included in
the transfer.

To the right of this entry, there are some available actions for the transfer bundle:

Clicking on the first of these links, Download Zip, we get a ZIP file that could be
sent to the location where the records are being transferred to. In this example, the
location is an offsite archival system.

The bundled ZIP file that we create contains each of the files corresponding to the
file content of the records being transferred and an additional file that is in XML and
contains all the metadata for the transfer records in the bundle.

Following the Lifecycle of a Record

[324]

After the records have been sent, we can create a report that documents the contents of
the transfer, where they were sent, and who did it. This document itself can be retained
and filed as a record. To create and file this report, we click on the File Report link. The
format and sample contents of the transfer report are as follows. We'll look later in this
chapter at the internals for how the Transfer Report is generated:

The report is then filed and shows up as an Undeclared Record in the File Plan:

Transfer to the remote location may take some time, even if the data exchange is
primarily done electronically. Once the receiving authority is able to successfully
process the transfer bundle, on our side, we will mark that the transfer has been
completed. We do that by clicking on the Complete Transfer link action on the
transfer bundle.

Chapter 9

[325]

Once the transfer is complete, the transfer bundle is then removed from the
Transfers area. The transfer status icon on the transferred records and folders in
the File Plan changes to indicate that the transfer is complete:

In some organizations, transfer operations are chained, with one transfer
successively following another one. Ultimately though, the record is destroyed.

In this example, the next step scheduled after the transfer is an immediate
destruction of the document. The Destroy action now becomes available.

Accession
Accession is a very special type of transfer operation. It typically only applies to
federal agencies that have an obligation for transferring their records to the National
Archive and Records Administration, or NARA, for permanent storage.

The mechanics of accession are similar to those of the standard transfer process. The
difference between transfer and accession is that, with accession, the organization
that had been managing the records transfers not only just the records, but also all
responsibility and authority for them to another organization, typically NARA.
Under a normal transfer, the organization performing the transfer would continue to
maintain complete authority over them, although they may no longer reside in the
original records system after the transfer.

More information about NARA can be found at their website:
http://www.archives.gov/.

Following the Lifecycle of a Record

[326]

In a way similar to how we configured transfers, we can set up a Disposition
Schedule that uses accession. Consider the case of a disposition with immediate
cutoff after filing, followed by five years retention, accession to NARA, and
then destruction:

In this example, when a record is filed, it will be immediately cut off. After a five
year retention period, the record then becomes available for accession. At that
point, the Accession action item becomes available for the record:

After clicking on the Accession action, in the same way as for a transfer, the item is
moved to the Transfers area under the File Plan header in the left navigation panel:

As with standard transfers, the same actions are available for accessions. The
Accession bundle can be downloaded and transferred as a ZIP file. A report on the
accession transfer can be filed and then the transfer can be completed.

Chapter 9

[327]

After the action Complete Transfer is taken, the transfer item is then removed from
the Transfers list. At that point, the original record still exists in the File Plan, but it
is marked as having been transferred. In the example disposition schedule shown
above, after a transfer is competed, the record is then available for destruction:

Destruction
As we've seen earlier, Destruction is the last stage of a record lifecycle. After a
record has been retained and is no longer needed or has been transferred from the
repository to a new location, the document is available for destruction.

In the previous section on Accession, we looked at the example of a record that had
destruction as the final step of its disposition, immediately after the record was
transferred for accession.

If we select the Destroy action for a record that is available for destruction, we are
presented with the following dialog:

After confirming that we would like to destroy the record, there is a second
Confirmation screen:

Following the Lifecycle of a Record

[328]

After confirming a second time, the file contents of the record are deleted. With the
file content for the record missing, just a stub entry for the record remains in the
system. The stub still contains the complete metadata for the record and also all the
audit history information that has been logged for the record. In the document list,
the entry for the item shows a small status icon of a trash can and the thumbnail for
the item is changed to a picture of an icon with an information mark, which indicates
the record has been destroyed and the metadata is available for information only:

Don't confuse Destroy and Delete actions. Delete permanently removes
the record, including all metadata and audit information from the system.
Destroy removes the file content from the record while maintaining a
complete audit trail and metadata for the record, and marks the item with
an icon as having been destroyed.

Audit log
The Audit log contains the complete history of every action that was performed on
a record. A Timestamp, Event name, and User is recorded for each action. Both the
Previous and New values for every property that changed when an action occurred
are noted in the log:

Chapter 9

[329]

From the Audit log pop-up, two buttons near the upper right allow the log to be
either exported or filed as a record. For both cases, an HTML version of the audit
log is used.

Hold or freeze
Freezing a document or Folder means to temporarily suspend any lifecycle
instructions that would normally apply. In particular, the action of record
destruction is not permitted when a record is frozen.

If a Folder that has been frozen is due for cutoff, for example, the Folder delays
the cutoff action until the freeze has been removed. Similarly, if an item exceeds
its retention period while it is frozen, it will not advance to the next step of the
disposition until the freeze has been removed.

Once a record has been frozen, it stays in its current location in the File Plan and is
marked as being frozen. A frozen record cannot be modified. If a Folder is frozen, the
records within the Folder inherit the freeze, and no records can be moved from that
Folder, even if the records were added to the Folder after the freeze occurred.

Following the Lifecycle of a Record

[330]

Responding to a hold request
The terms freeze and hold have the same meaning. Very often, the reason for putting
a freeze on records or Folders is due to a legal request, sometimes referred to as a
legal hold. Lawyers, for example, may request to see all records that contain specific
keywords within the body of the record content or within the metadata.

Freezing records
To perform the freeze, we first find the documents or folders that we want to include
in the freeze. For example, we might decide to freeze all records related to our IT
policies. In the example here, we select the Folder related to IT policies and we select
the action Freeze from the drop-down menu:

Before the freeze is applied, it is necessary to enter some descriptive information as
to why the records are being frozen. After entering the text, we click on the Freeze
Record(s) button:

Chapter 9

[331]

The Folder that we selected is then frozen and is marked as such in the document list
of the File Plan:

Locating records on hold
We will also notice now that a new package has been added to the Holds area that
includes the Folder that we just put on hold. The Holds area can be reached under
the label File Plan on the lower left of the File Plan page:

The entry in the Holds area shows the new package, marked with the date and time
that the hold was made. The description of the reason for the hold is also displayed
on this page. In the actions area on the right-hand side of the row entry, we see that
we can Release the current hold, Edit the text that describes the reason for the hold,
and also look at the Audit Log.

Following the Lifecycle of a Record

[332]

If we click through on this entry, we can get a list of the contents that are bundled
into this package, that is the Folder which we froze. Clicking through into the Folder
shows that the Folder record contents are also frozen. Items that are frozen are
indicated as such with a blue snowflake icon, shown in the status area on the row of
the item:

Items included as part of the hold package can be removed from it by selecting the
Unfreeze action. In this way, it is possible to exclude items from a freeze. Note that
it isn't possible to add new items to a hold package from the user interface once the
hold has been placed.

Creating an export package of requested
records and metadata
Once the items have been frozen, it is then possible to bundle the records and the
metadata for those items to create an export package. The package is suitable for
transport to the requesting party.

To Export the package, we first locate the package in the Holds area and then click
through it to see the contents of the package. We select all the items contained in the
package, and then choose Export from the drop-down menu:

Chapter 9

[333]

Then, on the next screen, we select the option to Export the package as a ZIP file:

If the package is intended to be sent to another Alfresco system,
then selecting ACP as the desired format can ease the task of
importing the data into the other system.

After a brief pause, the ZIP file is downloaded to our local computer. After opening
the ZIP file, in this example, we see four policy records that were in the IT Policy
Folder and a fifth file that contains the metadata for the Folder and records:

The metadata contains the information to match the files packaged in the bundle
with the original content files for the records in the package. All known information
for the records is included in the dump, including values for the properties inherited
from both content types and aspects.

Following the Lifecycle of a Record

[334]

Releasing the hold
Once there is no longer a need to keep the Folders and records of a hold frozen, the
hold can be removed. To do this, the Release Hold action can be selected for the
package within the Hold area:

Once the hold is released, the hold package is removed from the hold area. All freeze
icons are removed from any of the items that were in that package.

The File Plan report
Another option available on the File Plan page is the creation of a File Plan report.
The option is available from the toolbar. Clicking on the Report button launches the
File Plan report starting from the current location in the File Plan path:

The report is launched as a pop-up into a separate browser window along with a
Print dialog already opened. After printing or canceling out of the print dialog,
we can look at the report pop-up and see that it contains a diagram of the File Plan
structure, complete with node names, descriptions, and disposition instructions.

There is no save button on the report pop-up, but the report can be saved in HTML
from the browser by right-clicking and then selecting Save As. A problem with
the report is that it may be too verbose for very large File Plans. As noted earlier, a
partial plan can be printed by first positioning yourself somewhere in the File Plan
other than the root when creating the report:

Chapter 9

[335]

How does it work?
We've looked at the types of steps that can be performed on a record during its
lifecycle. In this "How does it work?" section, let's look slightly more deeply at some
of those steps.

The unique record ID
When a record container, such as the Series, Category, or Folder is created, or when
a record is filed, a unique record identifier for the record is created. Many companies
are already using an internal convention for creating unique record IDs.

Following the Lifecycle of a Record

[336]

The record ID naming convention within Alfresco is YYYY-SeqNumber, that is,
the year followed by a unique sequence counter. An example of this is the record ID
2010-0000003909.

Ideally, it would be nice if the unique record IDs were easily configurable, but
the code for generating the record ID is hardcoded in a Java file. That file is root\
modules\dod-5015\source\java\org\alfresco\module\org_alfresco_module_
dod5015\action\impl\FileAction.java:

// Calculate the filed date and record identifier
Calendar fileCalendar = Calendar.getInstance();
String year = Integer.toString(fileCalendar.get(Calendar.YEAR));
QName nodeDbid =
 QName.createQName(NamespaceService.SYSTEM_MODEL_1_0_URI, "node-
 dbid");
String recordId = year + "-" +
 padString(recordProperties.get(nodeDbid).toString(), 10);
recordProperties.put(RecordsManagementModel.PROP_DATE_FILED,
 fileCalendar.getTime());
recordProperties.put(RecordsManagementModel.PROP_IDENTIFIER,
 recordId);

Background jobs
There are two background jobs that support the correct functioning of Alfresco
Records Management. One is a notification function that alerts users when vital
records become due for review. The second job checks to see if any cutoff or
retention periods have expired and automatically updates those records based on the
steps in the disposition schedule.

Both types of background jobs are scheduled and run by Quartz, that is the scheduler
component that is built into Alfresco. These two jobs are configured within the file
tomcat\webapps\alfresco\WEB-INF\classes\module\org_alfresco_modfule_
dod5015\rm-job-context.xml.

More information can be found about Quartz on their home
page at http://www.quartz-scheduler.org/.
More information can be found about scheduling cron jobs
in Alfresco on the wiki pages at http://wiki.alfresco.
com/wiki/Scheduled_Actions.

Chapter 9

[337]

Review notifications
Review notifications are sent to specified users of the Records Management site
when vital records come up for review.

Configuring the notification e-mail bean
The file rm-job-context.xml specifies the configurations for scheduled job beans.
Consider the following section of code in that file:

 <!-- Notify Of Records Due For Review Job
 Sends out emails of records due for review
 -->
<bean id="scheduledNotifyOfRecordsDueForReviewJobDetail"
 class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="jobClass">
 <value>org.alfresco.module.org_alfresco_module_dod5015.job.
NotifyOfRe
 cordsDueForReviewJob</value>
 </property>
 <property name="jobDataAsMap">
 <map>
 <entry key="recordsManagementService">
 <ref bean="recordsManagementService"/>
 </entry>
 <entry key="recordsManagementNotificationService">
 <ref bean="recordsManagementNotificationService"/>
 </entry>
 <entry key="nodeService">
 <ref bean="nodeService" />
 </entry>
 <entry key="searchService">
 <ref bean="searchService" />
 </entry>
 <entry key="transactionService">
 <ref bean="transactionService" />
 </entry>
 <!-- Subject for email -->
 <entry key="subject">
 <value>${rm.notification.subject}</value>
 </entry>
 <!-- Role to notify -->
 <entry key="role">
 <value>${rm.notification.role}</value>
 </entry>
 </map>
 </property>
</bean>

Following the Lifecycle of a Record

[338]

The jobClass property sets the bean to use the Java class org.alfresco.module.
org_alfresco_module_dod5015.job.NotifyOfRecordsDueForReviewJob. This
class does the work of checking for vital records that are up for review and then
sends out the e-mail.

An important part of this code snippet is the last two entries of the property map
named jobDataAsMap. The first of these, called the subject, defines the string to be
used for the subject of the e-mail that is sent out. The second, called the role, is the
name of the role to whom the notification e-mails will be sent.

By checking in the file tomcat\webapps\alfresco\WEB-INF\classes\alfresco\
module\org_alfresco_module_dod5015\alfresco-global.properties, we can
see the configurations for the labels of both of these entries:

Notification configuration
rm.notification.role=RecordsManager
rm.notification.subject=Alfresco Records Management Notification

We see that, by default, only users with the role of RecordsManager are configured
to receive the e-mails.

Configuring the e-mail notification cron schedule
In the same rm-job-context.xml file, the cron schedule for the Review notification
e-mail is configured.

That block of XML in the file looks like the following:

<bean id="scheduledNotifyOfRecordsDueForReviewJobTrigger"
 class="org.alfresco.util.CronTriggerBean">
 <property name="jobDetail">
 <ref bean="scheduledNotifyOfRecordsDueForReviewJobDetail" />
 </property>
 <property name="scheduler">
 <ref bean="schedulerFactory" />
 </property>
 <property name="cronExpression">
 <value>0 0/15 * * * ?</value>
 </property>
</bean>

Chapter 9

[339]

This section sets up the cron expression that is used to determine how frequently
to check for and send out vital review e-mail messages. Cron jobs are system
background jobs that can be scheduled to occur on a regular basis. The cron
expression that specifies the schedule for the job can be interpreted by looking at the
meaning for each field of the expression. We see that, by default, the job is set up to
run every 15 minutes:

Position Field name Value Meaning
1 Seconds 0 At zero seconds into the minute
2 Minutes 0/15 Every 15 minutes starting on the hour
3 Hours * Every hour
4 Day of Month * Every day
5 Month * Every month
6 Day of Week ? No specific day of the week

For a more in-depth description of how cron jobs can be configured
within Alfresco, see the Alfresco wiki: http://wiki.alfresco.com/
wiki/Scheduled_Actions.

Configuring the contents of the notification e-mail
The FreeMarker template for the contents of the text body of the e-mail notification
is stored in the Alfresco repository. The file with the template can be found under /
Company Home/Dictionary/Records Management/Records Management Email
Templates. The name of the template document is Notify Records Due For
Review Email.ftl.

The content for the e-mail layout template is shown next:

The following vital records are due for review:

<#list records as record>
 - ${record.properties["rma:identifier"]!}
 ${record.properties["cm:name"]!}<#if record_has_next>,
 </#if>
</#list>

It is pretty minimal, but contains all the information needed for the notification.
Customization of the layout is easy to do by just modifying this file and saving the
new files to the repository. The subject for the e-mail can also be modified as we just
saw in the Records Management module alfresco-global.properties file (it is
different from the standard Alfresco configuration file with the same name).

Following the Lifecycle of a Record

[340]

An example of what the file looks like when it is actually sent is shown next:

Configuring outbound e-mails
In order for Alfresco to be able to send e-mail notification messages, the server must
be enabled to send outbound e-mails. An outbound e-mail server can be configured
by adding and completing the following lines in the standard alfresco-global.
properties file:

mail.host=<the name of your SMTP host>
mail.port=<the port that your SMTP service runs on (the default is
 25)>
mail.username=<the username of the account e-mail will be sent from>
mail.password=<the password>

To find out more about how to configure outbound e-mails from
Alfresco, consult the Alfresco wiki: http://wiki.alfresco.com/
wiki/E-mail_Configuration.

Manually checking for records requiring review
You may be interested, for troubleshooting purposes or just out of curiosity, to
know how to check which vital records are candidates for sending review e-mail
notifications.

We saw above in the configuration of the bean that the Java class that controls e-mail
notifications is called NotifyOfRecordsDueForReviewJob. When we look in that
Java source file (that is possible because Alfresco is open source software), we can see
what happens when the scheduled job is run.

Chapter 9

[341]

If you have a need to add other notification e-mails within the
Records Management system, the code provided by the Java
class NotifyOfRecordsDueForReviewJob provides a great
starting-point template for new development.

The flow of the code is basically just two steps. First, check to see if any records meet
the criteria that they are up for review, but no e-mail notifications have yet been sent,
and second, send out the e-mails to the users in the Role configured to receive them.

The check to see if any records exist is done by making a query with Lucene. The
Lucene query is as follows:

+ASPECT:"rma:vitalRecord"
 +(@rma\:reviewAsOf:[MIN TO NOW])
 +(@rma\:notificationIssued:false OR
 ISNULL:"rma:notificationIssued"
)

The three parts to the query look only for records that are vital records, which have a
review date that has been exceeded, and for which e-mail notifications have already
been sent.

Using the Node Browser in the Alfresco JSF Explorer client, we can then check to
see which records meet this criteria. To do that, we browse into the workspace://
SpaceStore area and select the search type from the drop-down to be Lucene.
After doing that, we enter the above query to see if there are any records that meet
the criteria:

The Java class NotifyOfRecordsDueForReviewJob can be found in
the Alfresco source repository at http://svn.alfresco.com/repos/
alfresco-open-mirror/ alfresco/HEAD/root/modules/dod-
5015/source/java/org/alfresco/module/org_alfresco_
module_dod5015/job/.

Following the Lifecycle of a Record

[342]

Tracking the scheduler
Another thing you may wish to do for troubleshooting purposes, or just plain
curiosity, is to watch the real time logger of the application server for messages
from the scheduler that are being logged.

That is easy to do; we just add the following lines to the bottom of the
tomcat\webapps\alfresco\WEB-INF\classes\log4j.properties file
and restart the server:

log4j.logger.org.alfresco.module.org_alfresco_module_dod5015.
 job=debug
log4j.logger.org.alfresco.module.org_alfresco_module_dod5015.
 notification=debug
log4j.logger.org.alfresco.module.org_alfresco_module_dod5015.
 jscript=debug

After doing this, we will see quite a few log messages related to the background jobs.
Remember, based on the default setting that we saw above, that the job will be run
every 15 minutes as the scheduler runs the review notification job:

We will see messages like this:

13:45:00,343 DEBUG
 [org_alfresco_module_dod5015.job.NotifyOfRecordsDueForReview
 Job] Job NotifyOfRecordsDueForReviewJob starting.
 13:45:00,390 User:System DEBUG
 [org_alfresco_module_dod5015.notification.Records
 ManagementNotificationServiceImpl] Sending notification email to
 dweisinger@formtek.com
 13:45:00,859 DEBUG
 [org_alfresco_module_dod5015.job.NotifyOfRecordsDueForReview
 Job] Job NotifyOfRecordsDueForReviewJob finished

Lifecycle tracking
The second type of background job that is set up to run by default within the Records
Management module is a lifecycle tracker job. This job, like the Review notification
job, is also primarily configured within the context file rm-job-context.xml.

Configuring the disposition lifecycle bean
A block section of XML in the context file defines the bean for the scheduled lifecycle
job. The code that configures it is as follows:

 <!-- Disposition Lifecycle Job -->
<bean id="scheduledDispositionLifecyceleJobDetail"
 class="org.springframework.scheduling.quartz.JobDetailBean">

Chapter 9

[343]

 <property name="jobClass">
 <value>org.alfresco.module.org_alfresco_module_dod5015.job.
 DispositionLifecycleJob</value>
 </property>
 <property name="jobDataAsMap">
 <map>
 <entry key="nodeService">
 <ref bean="nodeService" />
 </entry>
 <entry key="searchService">
 <ref bean="searchService" />
 </entry>
 <entry key="recordsManagementActionService">
 <ref bean="recordsManagementActionService" />
 </entry>
 <entry key="transactionService">
 <ref bean="transactionService" />
 </entry>
 </map>
 </property>
</bean>

There are a number of standard services that are configured here. The main thing of
interest to us in this discussion though is the value set for the jobClass property.
This refers to a Java class org.alfresco.module.org_alfresco_module_dod5015.
job.DispositionLifecycleJob where we can find additional information about
the inner workings of this scheduled job.

Configuring the lifecycle cron schedule
We see also in the file rm-job-context.xml that the lifecycle cron job is, just as
in the case we saw above for review e-mail notifications, scheduled to be sent out
every 15 minutes:

<bean id="scheduledDispositionLifecyceleJobTrigger"
 class="org.alfresco.util.CronTriggerBean">
 <property name="jobDetail">
 <ref bean="scheduledDispositionLifecyceleJobDetail" />
 </property>
 <property name="scheduler">
 <ref bean="schedulerFactory" />
 </property>
 <property name="cronExpression">
 <value>0 0/15 * * * ?</value>
 </property>
</bean>

Following the Lifecycle of a Record

[344]

As an aside, it might be good to reconfigure the two background jobs
to not occur at the same time. In fact, depending on the usage of your
system, it may be possible to reduce the frequency of checks to only once
or a few times per day.

Manually checking for lifecycle records
In a similar way to how we checked for records that are up for review, we can also
manually check to see which records should be getting identified by the lifecycle
tracker job.

By examining the Java source code, we can find that the query that the job makes to
identify records that need updating uses the following Lucene search criteria:

+TYPE:"rma:dispositionAction"
+(@rma\:dispositionAction:("cutoff" OR "retain"))
+ISNULL:"rma:dispositionActionCompletedAt"
+(@rma\:dispositionEventsEligible:true OR @rma\:dispositionAsOf:[MIN
 TO NOW])

We see here that records themselves are not specifically being searched for here.
Objects of the type disposition action, or rma:dispositionAction, are being
tracked.

Logging information for the lifecycle scheduler
The log4j settings that we defined above for the review e-mail notification also
apply to the lifecycle scheduler. Using those settings, you will see log messages
being printed for both types of cron jobs.

The File Plan component
In the File Plan chapter, we saw that the component called dod5015-fileplan on the
File Plan page contains links that, when clicked on, will show all the items that are
in-progress for Holds and Transfers:

Chapter 9

[345]

The files that control the dod5015-fileplan component are found in tomcat\
webapps\share\WEB-INF\classes\alfresco\components\documentlibrary\
dod5015-fileplan.*.

On examination of the component files, we find that they are surprisingly simple.
For example, there is a controller JavaScript file, dod5015-fileplan.get.js, but it is
empty. TheFreeMarker template for the component is in the file dod5015-fileplan.
get.html.ftl and it is very short:

<#assign filterIds = "">
<div class="filter fileplan-filter">
 <h2>${msg("header.fileplan")}</h2>
 <ul class="filterLink">
 <a rel=""
 href="#">${msg("label.transfers")}
 <a rel=""
 href="#">${msg("label.holds")}

</div>
<script type="text/javascript">//<![CDATA[
 new Alfresco.component.BaseFilter("Alfresco.DocListFilePlan",
 "${args.htmlid}").setFilterIds(["transfers", "holds"]);
//]]></script>

The FreeMarker file defines a very simple layout. The labels for the elements of the
component are defined in the file dod5015-fileplan.get.properties:

Title
header.fileplan=File Plan

Filters
label.transfers=Transfers
label.holds=Holds

We see that most of the dynamics for the component are orchestrated by client-side
JavaScript. At the bottom of the FreeMarker template above, we see that on the client,
a JavaScript object called Alfresco.component.BaseFilter is instantiated.

The BaseFilter object is defined in the file tomcat\webapps\share\js\alfresco.
js. The method called setFilterIds() is called from the above script in the
FreeMarker file:

setFilterIds: function BaseFilter_setFilterIds(p_aFilterIds)
{
 // Register the filter
 Alfresco.util.FilterManager.register(this.name, p_aFilterIds);
}

Following the Lifecycle of a Record

[346]

In this method, the filter IDs are then registered and associated with the Transfer and
File Links.

Linking to the transfer and hold pages
When either the Transfers or Holds links are clicked on, the page is re-rendered.
Appended to the page URL is the filter parameter that specifies the type of filter
to apply when re-rendering the page.

For example, the URL for the transfers page has the filter parameter appended
to the end: http://localhost:8080/share/page/site/rm/documentlibrary#fil
ter=transfers.

The value of the filter parameter then controls the rendering of the page.

Rendering transfer and hold Items
In Chapter 5, when we discussed the rendering of the File Plan page, we saw how the
JavaScript files dod5015-documentlist.js and documentlist.js control the display of
items in the center document list component. The same JavaScript files are used here
in the rendering of the transfer and hold items:

As we saw before, the document list is based on a YUI Data Table control. Each row
of the table has five cells that are labeled Select, Status, Preview, Description, and
Actions, and each column of the table has a function that controls the rendering of
the column's cells.

Within the column rendering functions for the Data Table are conditionals that
control the type of page markup that is used when rendering a row of the table.
The markup used will differ depending on whether the row type is for a folder or
for a record-series, for example. In the two cases that we are considering now,
the row type referred to in the dod5015-documentlist.js file is either transfer-
container or hold-container.

Chapter 9

[347]

Finding transfer items
We just saw that the value for the parameter filter controls how the File Plan page
is rendered. The filter value also controls the content on the page. The value for
filter is passed in as an argument to the data webscript that finds the rows of data
that are then displayed on the page.

We saw earlier when we discussed the File Plan how the JavaScript method _
buildDocListParams in the file documentlist.js builds the data webscript URL to
determine which items to display on the File Plan page.

In the case of transfers, in a similar way, a URL is constructed that looks like the
following:

http://localhost:8080/alfresco/service/slingshot/doclib/dod5015/
doclist/all/site/rm/documentLibrary?filter=transfers&noCac
he=1283705102828

This URL looks like the one we saw earlier. But note that here we are applying
the transfers filter to the results. We can trace this service call into the Alfresco
repository by looking at the data webscript tomcat\webapps\alfresco\WEB-
INF\classes\alfresco\templates\webscripts\org\alfresco\slingshot\
documentlibrary\dod5015-doclist.get.*.

In the file dod5015-doclist.get.js in the function getDocList(), the Lucene
query string for the filter type is determined. The query string is looked up within
the method Filters.getFilterParams() in the file dod5015-filters.lib.js.
We will come back to this file when we look at Records Management search in more
detail in the next chapter. For now, from this file, we can find that the filter query
that is used to find all transfers looks like the following:

+PATH:"/app:company_home/st:sites/cm:rm/cm:documentLibrary//*"
+TYPE:"{http://www.alfresco.org/model/recordsmanagement/1.0}transfer"

Following the Lifecycle of a Record

[348]

As a step to satisfy our curiosity again, we can paste this Lucene search criteria into
the Node Browser within the workspace://SpacesStore store. After doing that,
we'll see a screen that looks like the following:

Finding hold items
In the same way, we can trace what happens when the user clicks on the Holds link
in the File Plan left panel. In the file documentlist.js, a call is made to the Alfresco
repository with a URL that applies the filter named holds:

http://localhost:8080/alfresco/service/slingshot/doclib/
dod5015/doclist/all/site/rm/documentLibrary?filter=holds&noCac
he=1283705102828

Then in the file dod5015-doclist.get.js, a call is made into the method Filters.
getFilterParams() in the file dod5015-filters.lib.js. That method then looks
up the Lucene query that is used to find all holds, the results of which populate the
rows of the YUI Data Table in the document list component. The Lucene query to
find the rows looks like this:

+PATH:"/app:company_home/st:sites/cm:rm/cm:documentLibrary//*"
+TYPE:"{http://www.alfresco.org/model/recordsmanagement/1.0}hold"

Chapter 9

[349]

Transfer report
We saw above how a report can be generated that documents the transfer of records.
The generation of the report is triggered by selecting the File Report action for an
item appearing in the transfer list:

The actions that are available from the document list component of the File Plan
page are defined in the file tomcat\webapps\share\WEB-INF\classes\alfresco\
components\documentlibrary\dod5015-documentlist.get.config.xml.

In that file, we can find the actions that are available for each type of row that is
displayed in the YUI Data Table of the document list. In particular, we can find the
actionSet associated with the transfer items:

<actionSet id="transferContainer">
 <action type="simple-link" id="onActionDownloadZip"
 permission="AuthorizeAllTransfers" href="{transfersZipUrl}"
 label="actions.download-zip" />
 <action type="action-link" id="onActionFileTransferReport"
 permission="AuthorizeAllTransfers" label="actions.file-report" />
 <action type="action-link" id="onActionTransferComplete"
 permission="AuthorizeAllTransfers" label="actions.transfer-
 complete" />
 <action type="action-link" id="onActionViewAuditLog"
 permission="AccessAudit" label="actions.view-audit-log" />
</actionSet>

Here we see that the action for creating and filing a transfer report has the id
onActionFileTransferReport. These action ids can be mapped to JavaScript
methods that will be called when the action item is selected.

The client-side JavaScript methods for standard document list actions are defined
in the two files, namely, actions.js and documents.js in the tomcat\webapps\
share\components\documentlibrary\ directory. For example, in this file, there
are onActionXXX methods such as onActionCopyTo and onActionMoveTo.

For the Records Management module, additional actions are defined
in the dod5015-actions.js file. In that file, we find the definition for
onActionFileTransferReport:

onActionFileTransferReport: function RDLA_onActionFileTransferReport(
assets)

Following the Lifecycle of a Record

[350]

{
 if (!this.modules.fileTransferReport)
 {
 this.modules.fileTransferReport = new
 Alfresco.module.RecordsFileTransferReport(this.id + "-
 fileTransferReport");
 }

 this.modules.fileTransferReport.setOptions(
 {
 siteId: this.options.siteId,
 containerId: this.options.containerId,
 path: this.currentPath,
 fileplanNodeRef: this.doclistMetadata.filePlan,
 transfer: assets
 }).showDialog();
}

That method will pop up the dialog to select the location where the generated report
will be filed:

The JavaScript object Alfresco.module.RecordsFileTransferReport is defined
in the file tomcat\webapps\share\modules\docuemntlibrary\dod5015-file-
transfer-report.js.

Chapter 9

[351]

After the user selects the location for where to file the transfer report by clicking
on the File Report button, the onOK function for the dialog is called to process the
request. This function then kicks off the process of creating and filing the report:

onOK: function RMCMFT_onOK()
{
 // create the webscript url
 var transferNodeRefParts =
 this.options.transfer.nodeRef.split("/"),
 transferId = transferNodeRefParts[transferNodeRefParts.length -
 1],
 url = Alfresco.constants.PROXY_URI + "api/node/" +
 this.options.fileplanNodeRef.replace(":/", "") + "/transfers/"
 + transferId + "/report";

 // Post file transfer report request to server
 Alfresco.util.Ajax.jsonPost(
 {
 url: url,
 dataObj:
 {
 destination: this.selectedNode.data.nodeRef
 },
…

The function builds a URL that points to an Alfresco repository web service and then
POSTs a request to it. The format for the URL used looks like the following:

http://localhost:8080/share/proxy/alfresco/api/node/workspace/
SpacesStore/98c5a184-9901-4b7c-9e16-91522f2ccb2a/transfers/158dcf81-
41eb-4144-afe8-aae77aee346d/report

On the repository server side, the format of the request URL corresponds to the
webscript tomcat\webapps\alfresco\WEB-INF\classes\alfresco\templates\
webscripts\org\alfresco\rma\transferreport.post.desc.xml. In that file,
the matching URL signature is defined as follows. This matches the URL that was
just created:

<url>/api/node/{store_type}/{store_id}/{id}/transfers/{transfer_id}
 /report</url>

This webscript can be processed by mapping to a Java service implementation in the
Alfresco source code in the file root\modules\dod-5015\source\java\module\
org_alfresco_module_dod5015\script\TransferReportPost.java.

Following the Lifecycle of a Record

[352]

In that file, we can find the code that generates the transfer report. The Java code
there writes an HTML file with the report information and then files that report in
the requested location.

Unfortunately, the format for the report is hardcoded in Java so that any change
to customize the report will require a change to the Java code.

This example also shows how Share handles Document Library and File
Plan actions in general. More information about Share Document Library
actions can be found on the Alfresco wiki at http://wiki.alfresco.
com/wiki/Custom_Document_Library_Action.

Summary
We covered the following concepts in this chapter:

•	 How lifecycle steps like record declaration, cutoff, retention, transfer, and
destruction work

•	 How to create an export package to respond to a legal request
•	 How transfer and hold packages are accessed directly from File Plan links
•	 How to create a File Plan Report
•	 What various status icons, including cutoff, transfer, and destruction mean

In the "How does it work?" section, we dug into the internals of some items that
included the following:

•	 How and where the unique record ID is created when a record is filed
•	 How Review Notifications are configured and what the process is for

sending them
•	 How the Lifecycle cron job is configured and how it automatically updates

records and Folders based on their disposition schedules
•	 How transfer packages are tracked within Records Management
•	 How hold packages are tracked within Records Management
•	 How transfer reports are generated and sent

In this chapter, we discussed in detail the different steps that make up record
lifecycles. In the next chapter, we will look at the search capabilities of Alfresco Share
and at a special Records Search feature that was specifically built around the special
requirements for locating records.

Searching Records
and Running Audits

In this chapter, we will see one of the biggest benefits of using an Electronic Records
Management (ERM) system, namely, Search. When using a traditional paper-based
records management system, finding records with any criteria other than the filing
structure enforced by the File Plan is very difficult and time consuming.

Search is an excellent complement to the capabilities provided by the File Plan.
Search improves the accuracy of locating important records and it is a necessary tool
for being able to respond to legal and e-Discovery requests in a timely way.

In this chapter, we will now describe:

•	 How to perform basic and complex searches using the Records Search page
•	 How to create and use saved searches
•	 How to audit the actions and events that have occurred in the records system

Search and Records Management
We've spent much of this book discussing the File Plan. The File Plan is central to
many of the concepts of Records Management. It is a well-understood organizational
tool for categorizing and filing records, and it assists in locating records and in
managing record lifecycles.

But over the last decade, with the wider introduction of Electronic Records
Management (ERM) systems, search has become an important complementary tool
to the File Plan. With search, the ability to locate records efficiently has improved
dramatically. E-Discovery, by its very definition, would not exist today without search.

Searching Records and Running Audits

[354]

Authorization and search
In this chapter, we focus on how the Records Search page can be used to query items
within the Records Management site. Similar to the way that Alfresco authorization
limits which parts of the File Plan tree structure a user can see and navigate, the results
from any search query made by the user are filtered such that only the items in the
system that the user has read permission access to will be included in the results.

Records Search page
In order to comply with the extensive search requirements found in the DoD 5015.2
specification, the Records Management site includes a special page dedicated to
search over the File Plan and the records that are in it. The Records Search page
can be accessed by clicking on the link in the navigation area under the Records
Management Site title:

Single-field search form
Document and record search forms can traditionally become very complex.
Attempting to cram the labels and entry fields for tens of properties on a single
screen is a challenge, both for developers to layout and for users to understand.

In the design of the Records Search page, Alfresco tried to opt towards simplicity.
Typical user searches include very few properties as part of their search criteria,
but in order to comply with the DoD 5015.2 specification, it is necessary to be able
to search over all possible properties of the records system, so that simplifying the
form by excluding some of the properties from the display was not an option.

The DoD 5015.2 specification mandates that the records system "Allow searches
using any combination of the record category, record, and/or folder metadata
elements, including organization-defined and system-generated metadata".

The solution that Alfresco came up with was to create a Records Search form that
tries to model the simplicity of the single-field search form popularized by Google.
Alfresco also modeled the query syntax used for the records search form on Google's
syntax by allowing additional search criteria qualifiers to be added to the search
string.

Chapter 10

[355]

With Google search, for example, searches can be restricted to be across only the
pages of a given website by including the following query fragment with the search
string: site:website.com.

The resulting design of the Records Search page is a single-field form that is familiar
to casual users and that provides power users the ability to formulate very complex
searches. The downside of the form is that some users may struggle a bit if they don't
fall into the category of power users and if they need to do more than just the very
basic searches.

To assist the non-power user in using the search form, Alfresco has created a couple
of options. They have added a drop-down menu to help guide the user in adding
qualifying search criteria. They have also added Saved Searches that can be used to
capture frequently occurring searches and to then turn those searches into "canned"
ones that can be easily called up and later reused.

The Search form
Let's look in greater detail now at the user interface of the Records Search page:

The main panel on the Records Search page is tabbed. The Criteria tab shows the
main query field and the Results tab displays the search results after a search has
been run.

A search is initiated by clicking on the Search button. After the search is complete,
the open tab switches from Criteria to Results and displays the hits found from
the search. If we switch back to the Criteria tab, the search criteria just entered is
still retained. All search criteria can be re-initialized by clicking on the New Search
button in the upper-right of the screen.

Searching Records and Running Audits

[356]

Basic search
A simple search can be run by simply typing a word into the text search field.
For example, if we type the word Security and click on the Search button, we
will get search hits from records that have the word Security within the content
of the record:

The search results are then displayed in the Results tab, as shown in the next
screenshot. If we then click again on the Criteria tab, we will see our original
search criteria:

Property search
The search criteria can be extended to include search over metadata properties as
part of the criteria. For example, we could search for just the records with the value
of Scope of ISO as their cm:title property by entering:

cm:title:"Scope of ISO"

Chapter 10

[357]

The syntax for searching over properties is <property-name>:<value>. However,
remembering the names of all the available searchable properties is a bit of a
challenge. To help with that, Alfresco included a drop-down menu on the tab labeled
Insert Field. Any property that is searchable can be included in the query. Many, if
not most, of the searchable fields are available from this list.

Clicking on the drop-down menu shows a cascading list of the possible metadata
properties that can be searched over:

For example, if we select Content | Title from the menu, in the search field, the
value title: will be auto-filled, based on the current position of the cursor in the
search field.

In this way, we can select the correct property name from the menu and then fill
in the search value for the property. Note that, in this case, the property name
auto-filled was title: and does not include the namespace prefix cm: as we
used above in our example.

The use of namespace prefixes with the property names that can be selected from
the drop-down menu is inconsistent. Many of the properties do not need a prefix,
but some do. When entering a property name and in doubt of whether to include
the prefix or not, it is usually best to include it.

Date search
Search can be a bit unforgiving when it comes to entering dates as criteria for search.
The format must be in the form "YYYY-MM-DD". Entering anything other than that
format will not work. To help ensure that the correct date format is used, the Criteria
tab includes an Insert Date button.

Searching Records and Running Audits

[358]

Clicking on that button will pop up a calendar from which a date can be selected and
auto-filled into the search field. Note that the value for the date must be enclosed in
double quotes:

Search filters
In addition to how we've seen that property search criteria can be used to qualify
a search, a search can be further qualified by using filters that are labeled as
Components on the Criteria tab.

To see these, we need to expand the Criteria tab by clicking on the arrow next to
the Results options label. Most of what gets exposed in the expanded Criteria
tab is related to formatting and display of the result set, and we'll get to that next.
However, for now, we will discuss the selections in the Components list located
along the right-hand side. The options in that list can be used to further filter the
results of the query:

Chapter 10

[359]

Unlike properties which are appended to the search string in the main search field
and that are visible to the user, selection of items from the Components list causes
criteria to be added to the search string just prior to search, and this additional
criterion is not displayed to the user.

For example, selecting the Record Folders checkbox from under Components
would result in the query string being appended with the additional criterion:

TYPE:"rma:recordFolder

Similarly, selecting either Record Categories or Record Series would append the
following criteria:

TYPE:"dod:recordCategory"
TYPE:"dod:recordSeries"

By default, when the Records Search page is opened, the Records checkbox is
checked. This causes the following criterion to be appended:

ASPECT:"rma:record"

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Searching Records and Running Audits

[360]

For either the checkboxes of Undeclared or Vital to be selected, it is necessary that
Records also be checked. If Records is checked and Undeclared is not checked,
then the following criterion is added:

ASPECT:"rma:declaredRecord"

When Vital is checked, then the following is applied to the query string:

ASPECT:"rma:vitalRecord"

Selecting Frozen and Cut Off values apply the following, respectively:

ASPECT:"rma:frozen"
ASPECT:"rma:cutOff"

Restricted File Plan search
Searches made from the Records Search page are constrained to show results only
from within the File Plan. In order to ensure that the search results are constrained,
the following additional criterion that limits the PATH of the search is appended to
the search string in the background, prior to actually running the query:

PATH:"/app:company_home/st:sites/cm:rm/cm:documentLibrary//*"

While this value for the search path restricts us to records and documents only
within the File Plan, we could, potentially, further restrict the search within the File
Plan by adding an even more restrictive PATH criterion to the search query string.

For example, if we wanted to limit our search to find only records that are under a
record Series named Finance, we could include the following criterion. Note that
the name of the Series includes the prefix cm:

PATH:"/app:company_home/st:sites/cm:rm/cm:documentLibrary/
cm:Finance//*"

Note that the path consists of QNames separated by /, and the QNames in the path
must be properly escaped if they contain special characters. Later in this chapter, we
will discuss how to properly escape QNames.

Search result columns
The left-most section of the expanded area of the Criteria tab labeled Metadata
shows a list of properties that can be included as columns in the search result list
that is returned from the query.

Chapter 10

[361]

By checking the name of a property in this list, we are specifying that it should be
included as a column in the search results. The items in this list correspond to the
same items that were in the drop-down property names.

There isn't a limit to how many properties can be selected, but since each property
selected corresponds to a column in the results table displayed in the Results tab,
selecting too many will cause the right-most edge of the table to push to the left,
making it necessary for the user to scroll to the right to see all of the data.

Result list search order
The search order of the return search result list can be sorted by primary, secondary,
and tertiary columns. The sort order can be specified in the section of the Criteria tab
under Results options labeled as Order:

Searching Records and Running Audits

[362]

By default, the results are sorted only by a primary column. The default search
property is called Identifier and it corresponds to the unique record identifier for
the item. The default search order is Ascending.

The value of the sort property used in the search can be selected from the drop-down
list. The sort property need not be a property that is displayed in the search results.

The sort order direction for the results can be selected as either Ascending or
Descending.

Selecting a value for the primary sort criterion is required and is enforced by the
user interface. Secondary and tertiary sort criteria are optional.

Clearing the search criteria
The search criteria can be cleared on the form by clicking on the New Search button
on the upper right. After doing that, the main criteria field is cleared and the sections
labeled Order and Components are set back to their default states. Note that the
selections in the Metadata multi-select list that control which columns will be
displayed do not get reset. To reset everything, we need to refresh the page.

The Results tab
The Results tab is a convenient screen for immediately seeing the results of the
search. Since the result data is drawn via AJAX to this second tab on the window,
the entire screen will not refresh, making the user experience a little bit nicer.

The left-most column of the data table for the search results list is called Type and it
is displayed as an icon that identifies the type of object that the row represents, like a
record or a Folder. A URL link to the object details page for a given row in the results
is also available and can be seen by moving the mouse either across the icon or across
the text for the unique record identifier that is listed by default in the second column.

The result rows can be sorted by clicking on the label for the column that we wish to
sort by. Clicking again on the column label will toggle the sort order back and forth
between ascending and descending:

Chapter 10

[363]

Clicking on the Printer Layout button causes the page to redraw, removing the title
and navigation information from the top of the page, making room for more data to
be displayed in the data table.

Clicking on the Export button will dump and download all of the search result
information into an ACP file. The file will include the file content as well as all
metadata. Recall that an ACP file contains complete information about the directory
structure, content data, and metadata about records in the repository. ACP files are
in a format that allows the data to be easily imported into an Alfresco system.

Searching Records and Running Audits

[364]

Syntax errors
As of Alfresco 3.3, the error handling from syntax errors in the search string on the
Records Search page are somewhat cryptic. For example, if the property name is
incorrectly spelled or if the value for the property is not well formatted or escaped,
an error will be thrown. Typically, the text of the error message doesn't give any
indication as to the reason for the error other than a Wrapped Exception occurred
and that the script Failed to execute:

Have no fear though. Simply click on the Criteria tab again and re-edit your query.
When having problems, referring back to the summary of the query language syntax
in the next section can help.

FTS-Alfresco query language
The Records Search page provides a user interface for collecting the user
search criteria for objects within the File Plan. The query is formulated using
the FTS-Alfresco query language, where FTS stands for Full Text Search.

At the heart of the FTS-Alfresco queries is the Lucene search engine, but it
provides richer constructs than what are available by just using Lucene.

Searching for a term
To search for a single word or term that is located somewhere within the file
content of a record, the search can consist of just that word, much like a standard
search engine. When the search is run, any property that is of type d:content, like
cm:content, will be considered in the search. Consider the following example:

digital

This is equivalent to using the qualifier TEXT as a prefix to the search string:

TEXT:digital

Chapter 10

[365]

Searching for a phrase
Phrases can be searched by using double quotes to enclose multiple words or terms.
For example:

"electronic digital signature"

Quotes can be embedded within double quotes by escaping each of the quotes, such
as in the following:

"\"electronic digital signature\""

Wildcard search
Wildcard search patterns are supported. The asterisk operator (*) matches zero or
more characters, and the question mark (?) matches a single character. Wildcard
characters can also be embedded within the double quotes of a phrase. For example,
consider the following examples:

ele*ic
elect??nic
"ele*ic digital"
"electronic ?igital"

Conjunctive search
AND can be used to combine a term or phrase when both of the two search fragments
are to be included in the results. The use of the operator AND is not case sensitive. and
could also be used. For example, the following would have the same result::

electronic "digital signature"
electronic AND "digital signature"
TEXT:electronic AND TEXT:"digital signature"

Disjunctive search
OR can be used to combine a term or phrase when it is sufficient that either of
the search fragments are to be included in the results. The default is that search
fragments are ORed together:

electronic OR "digital signature"

Searching Records and Running Audits

[366]

Negation
Terms and phrases can be negated using any one of NOT, !, or -. Consider these
examples, all of which are equivalent:

NOT electronic AND "digital signature"
!electronic AND "digital signature"
-electronic AND "digital signature"

Note that standalone negations are not supported. Negation can only be
used when at least one other element is included as part of the query.

Properties
Not only file content, but the values of metadata properties can also be searched.
The syntax for searching properties is as follows:

<property-name>:<search-value>

Note that there can't be any whitespace before or after the colon separator.

The property-name is the property name that is used by either the content type
or aspect. The name of the property needs to be qualified by including the full
namespace or else use the namespace prefix.

For example, the following two searches are equivalent; the first one uses the
prefix and the second one uses the full namespace:

cm:content:digital
{http://www.alfresco.org/model/content/1.0}content:digital

Other examples of searches over property values include the following:

cm:creator:admin
rma:originator:Dick*
sys:node\-dbid:13620

Note that hyphens within the property names need to be escaped, like the example
here with the property sys:node-dbid.

Chapter 10

[367]

Special fields
In addition to properties, there are some special fields that can be included in the
search. The special fields are formatted in the same way as properties. Most of the
special fields are abbreviations for commonly used properties. Some of the special
fields are shown in the next table:

Special field
name

Example Comment

TEXT TEXT:digital Searches over all d:content
type properties for a node.
cm:content is the principle
property of type d:content.

ALL ALL:digital

ALL:"digital signature"

Searches over all properties with
text or content.

KEYWORDS KEYWORDS:digital Searches over name, title,
description, and content.

ID ID:"workspace://
SpacesStore/098757a5-5497-
4fc4-922f-537cd0cc80b0"

Searches for the record with this
NodeRef. Same as sys:store\-
identifier:SpacesStore
AND sys:node\-
uuid:"098757a5-5497-4fc4-
922f-537cd0cc80b0".

PARENT PARENT:"workspace://
SpacesStore/ada82211-b408-
4db9-a484-8fcf2966ad51"

Searches for records that are
children of this NodeRef.

QNAME QNAME:"cm:Security_x0020_
Policy"

QNAME:"cm:May_0x0020_
Invoices"

Search for the Qualified name
(QName) for the node. The
namespace prefix, followed by
a colon and the object name. See
below for ISO-9075 encoding
QNames.

ISNULL ISNULL:"cm:description" Searches for nodes where this
property is NULL. The property
is referred to by QName within
double quotes. Unset properties
are treated as NULL.

ISNOTNULL ISNOTNULL:"cm:description" Searches for nodes where this
property is not NULL. The
property is referred by QName
within double quotes.

Searching Records and Running Audits

[368]

Special field
name

Example Comment

ISUNSET ISUNSET:"cm:description" Searches for nodes where this
property is not set. The property
is referred to by QName within
double quotes.

TYPE TYPE:"rma:recordfolder" Searches for nodes of this content
type. The type value is referred to
by QName within double quotes.

CLASS CLASS:"cm:content" Searches for nodes of this class.
The class value is referred to by
QName within double quotes.

ASPECT ASPECT:"cm:author"
ASPECT:rma\:cutoff
ASPECT:rma_x003a_cutOff

Searches for nodes with this
aspect applied. The aspect value
is referred to by QName within
double quotes.

When referring to the QName as the value for one of the special fields, it is usually
easiest to simply enclose the QName within double quotes. As we saw in the last
example for ASPECT, it is also possible to not use double quotes, but to either escape
the colon or to use the ISO-9075 encoding.

It is also possible to use the fully qualified namespace as part of the special field
search criteria. For example, instead of ASPECT:"cm:author", we could use
ASPECT:"{http://www.alfresco.org/model/content/1.0}author".

Escaping QNames
Note that QNames are ISO-9075 encoded. The formula to do ISO-9075 encoding is as
follows:

"_x" + <4-digit hex code> + "_"

Some commonly occurring characters that frequently appear as part of a QName and
need to be encoded are the following:

Space _x0020_
! _x0021_
" _x0022_
x0023
$ _x0024_
% _x0025_

Chapter 10

[369]

& _x0026_
' _x0027_
(_x0028_
) _x0029_
* _x002a_
+ _x002b_
, _x002c_
- _x002d_
. _x002e_
/ _x002f_
: _x003a_
; _x003b_
= _x003d_

Escaping characters not in a QName
Other than QNames, characters within property names and their values can be
escaped by using the backslash character \:

sys:node\-dbid:13620

Grouping
Parentheses can be used to group elements of the query. For example, consider the
following:

(ASPECT:"rma:record" AND ASPECT:"rma:declaredRecord") AND
(QNAME:"cm:Security_x0020_Policy" OR QNAME:"cm:Continuity_x0020_
Policy") AND (NOT ASPECT:"rma:versionedRecord")

Items in the innermost parentheses will be evaluated first.

Boolean
Booleans are tested for in the search as either true or false, as in the following line:

rma:recordSearchHasDispositionSchedule:true

Searching Records and Running Audits

[370]

Dates
Date searching is supported for properties that are of type d:datetime, but the
date must be in ISO 8601 format. That is, it must be of the form "yyyy-MM-
ddTHH:mm:ss.sssZ".

Values of TODAY and NOW can also be used as values within search criteria. Both
refer to today's date.

The use of ISO 8601 dates in the Records Search screen is less rigid than in other
areas of Alfresco. The date value used in the query need not be in full ISO 8601
format with both time and date components. For example, consider the following
date searches:

rma:reviewAsOf:"2011-09-07"
rma:reviewAsOf:"2011-09-07T00:00:00.000Z"
rma:reviewAsOf:TODAY

ISO 8601 is a standard for representing date and time formats and time
durations. We discussed ISO 8601 in more detail in Chapter 7 relative
to specifying time elements for time-based triggers. In Chapter 8, we
also saw how it was used for formatting time and date information for
stored metadata. You can find more information about this standard here
at http://www.iso.org/iso/date_and_time_format and here
at http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=40874.

Ranges
It is also possible to search over property ranges for a number of data types that
include d:text, d:datetime, d:int, and d:long. MIN and MAX can be used when
searching numeric or date ranges:

Range type Example Comment
Inclusive
[#1 To #2]

sys:node\-dbid:[13620 TO
13625]

Uses square brackets. This example
searches all values between 13620 and
13625 inclusive.

Google-like
Inclusive
#1..#2

sys:node\-
dbid:13620..13625

sys:node\-
dbid:"13620".."13625"

Separates the min and max values
with two periods. This example is
equivalent to the previous one.

Chapter 10

[371]

Range type Example Comment
Exclusive
<#1 TO #2>

sys:node\-dbid:<13620 TO
13625>

Uses angle brackets. This example
searches all values between 13620 and
13625 inclusive.

Left-Inclusive
[#1 TO #2>

sys:node\-dbid:[13620 TO
13625>

Inclusive of the left value, exclusive
of the right one. This search does not
include 13625.

Right-
Inclusive
<#1 TO #2]

sys:node\-dbid:<13620 TO
13625]

Exclusive of the left value, inclusive
of the right one. This search does not
include 13620.

Unbounded
Lower Range
[MIN TO #1]

sys:node\-dbid:[MIN TO
13620]

Search over everything less than
13620 inclusive.

Unbounded
Upper Range
[#1 TO MAX]

sys:node\-dbid:[13620 TO
MAX]

Search over everything greater than
13620 inclusive.

The above methods for applying ranges work for dates too. For example, consider a
date search with an unbounded lower range and upper value of TODAY that is either
inclusive or exclusive:

rma:dateFiled:[MIN TO TODAY]
rma:dateFiled:[MIN TO TODAY>
rma:dateFiled:[MIN TO "2011-02-10"]

Dates should be enclosed in double quotes within the brackets.

Range searches are not supported for type cm:content.

Proximity searches
Google-style proximity word searches are allowed. Consider the text value for the
field rma:recordSearchDispositionInstructions: "Review every year. Destroy 2
years after obsoleted."

The following search would find a match on this field:

rma:recordSearchDispositionInstructions:("Review" * "year")

Searching Records and Running Audits

[372]

Mandatory elements
Prefixing an element of the query with + indicates that that term, phrase, or group
is mandatory.

Optional elements
Prefixing an element of the query with | indicates that that term, phrase, or group
is optional. The score of the item increases if it does match. Note that there must be
a match with at least one element of the query for an item to be included in the
result set.

Operator precedence
The following hierarchy of operator precedence exists:

"
[] < >
()
+ | -
NOT
AND
OR

A much more detailed description of FTS-Alfresco queries can be found
on the Alfresco wiki at http://wiki.alfresco.com/wiki/Full_
Text_Search_Query_Syntax.

Example searches
Here are a few example search strings:

Find all records that are available for
destruction.

dispositionActionName:destroy and
dispositionActionAsOf:[MIN TO NOW]

Find all records due for cutoff before
January 1, 2011.

dispositionActionName:cutoff and
dispositionActionAsOf:[MIN TO
"2011-01-01"]

Find all records that are due for transfer. dispositionActionName:transfer and
dispositionActionAsOf:[MIN TO NOW]

Chapter 10

[373]

Saved searches
Search queries can get complex and it is tedious to have to re-enter the search criteria
each time the search needs to be run. Saved searches are a solution to this problem.

Saved searches capture the complete state of all the settings for the widgets within
the Criteria tab, including the query text, the filter components, the metadata
corresponding to the search results columns, and the sort order. Once captured, the
saved search can be recalled and re-run with just a few clicks of the mouse.

Creating a saved search
To save the current state of the Criteria tab as a saved search, from the Criteria tab,
click on the Save Search button:

A dialog will pop up where the Name and Description for the saved search can
be entered:

Searching Records and Running Audits

[374]

After clicking on the Save button, the saved search then becomes available for later
reuse. It is added to a list of available searches that show up on the Saved Search
button drop-down menu. It also becomes available from the File Plan page in the left
navigation area of that page.

When the Saved Search is recalled from the Records Search page drop-down menu,
the search is not run immediately. Instead, the state of the Criteria tab widgets get
reset to the state they were in when the save search criteria was captured. The search
criteria can then be either edited or simply re-run by clicking on the Search button.

When the saved search is accessed by clicking on the name of the search in the File
Plan page navigation, the saved search is run and the results are presented in the
File Page:

Editing a saved search
A saved search can be edited by first going to the Records Search page and then
recalling the saved search criteria into the Criteria tab. After making changes to the
query, the state of the Criteria tab can then be re-saved by selecting Save Search and
then entering the same name for the search as the name of the original query.

After saving the query, we can verify that it was successfully saved by first clicking
on New Search to clear out the existing search criteria and then selecting the name
of the saved query that we just saved from the drop-down menu. We should see the
edited version of the saved query search criteria.

Chapter 10

[375]

Deleting a saved search
In the current design, there is no way from within the Records Management site
to delete a saved search. That's not good because often a saved search has only a
limited life, after which it will no longer be used.

Fortunately, the workaround for this missing feature is not difficult. To delete a
saved search, we navigate to the top level of the File Plan from the Share Repository
link.

Click on the Repository link at the top of the Share page and then navigate to the
Repository | Sites | rm directory. From this directory, we can navigate into a
directory called Saved Search.

The entries in that directory correspond to the names for each of the existing
Records Management saved searches. From this directory, a saved search entry
can be selected and then deleted.

After deleting the saved search entry, we can navigate back to the Records
Management File Plan and verify that the saved search has been removed from
the list of those available:

Searching Records and Running Audits

[376]

Note that any user who is a member of the Records Management site is
able to access the Record Search page. While users will be prevented from
seeing any items for which they have no authorization to see, any user is
able to create a saved search. Once a saved search is created, it is seen and
is available for use by all members of the Records Management site.

Records Management audits
To ensure compliance, a Records Management program will undergo periodic
audits. Sometimes the audits will be internal and other times they will be external.

For internal audits, a best practice is either to perform frequent limited-scope audits
or to conduct periodic full audits that examine all aspects of the system. The more
routine and commonplace the practice of conducting internal audits become for
your organization, the easier it will be when it becomes necessary to go through an
external audit.

Purpose of the records audit
The reasons for conducting an audit include the following:

•	 To ensure that the agreed upon practices and policies are being adhered to,
and to provide proof of that fact

•	 To ensure that the program is complying with the requirements of
regulatory and oversight bodies

•	 To ensure that records are legally defensible
•	 To improve the Records Management process

Regular internal audits are also good tests to ensure that your organization is
prepared for any sort of external audit. External audits, requested, for example,
by regulatory agencies, may need to be conducted sometimes with as little as a
one week prior notice.

Planning for the audit
The actual approach selected for the audit should be designed for your organization
to ensure that it is appropriate and effective. Planning for the audit is critical to
ensure that it is successful.

Chapter 10

[377]

It should be determined early on who has the overall responsibility for carrying out
the audit and what will be the roles and responsibilities for those who participate in
the audit.

It should also be made clear exactly what is the scope and methodology that will
be used for conducting the audits. If there are to be different types of audits, they
should also be identified.

It is also important to appropriately schedule the time needed for any resources
that will participate in the audit to ensure that disruption to normal work will be
minimized.

Ideally, the process for the audit should be formally drawn up and agreed to, well
before the audit is undertaken. Getting everything on paper early helps ensure the
success of the audit. It also helps make the process repeatable.

When the process is written, it also allows for easy annotation and changes so that
future audits can be improved on the next go-around when the steps of the written
process are followed. Seeing the whole plan on paper also makes it possible to
identify any gaps in the process or potential duplication of effort.

Things to look for in the audit
Compliance with internal policies and regulatory bodies often require that
the disposition schedules that have been implemented are consistent with the
requirements. This entails carefully reviewing all disposition schedules in the system.

If your organization is subject to review from regulatory bodies, it is important
to understand which groups could potentially request an external audit. Review
authority documents to understand what aspects of your records system or process
could potentially be reviewed for compliance.

While it is important to review all aspects of the records system, it often makes sense
to define a scope to the audit with a special focus on areas where non-compliance
with policies is most risky or that could be most damaging to the organization.

Prior to the audit, it is also useful to review the results of any previous audits and to
note problems that have been uncovered in the past. These also are areas that should
receive focus during the next audit review.

Much of what an audit tries to do is to compare actual results versus
expected results.

Searching Records and Running Audits

[378]

Any review of the records system needs to consider the following:

•	 Are the current retention periods used in the disposition appropriate?
•	 Are the record activities over the period since the last review consistent with

the expected filings and system usage?
•	 Are activities being completed within the required dates?
•	 Is there any reason to revise the instructions for any of the dispositions, to

clarify or to make them more consistent with stated policies?
•	 Does the structure of the File Plan continue to be relevant? Do some Series or

Categories need to be added or made obsolete?
•	 Is there any reason to believe that not all records are being filed? If so, which

record Categories seem to be lacking? Which groups in the organization are
most out of compliance?

•	 Is there any reason to believe that some users have permissions to access
parts of the system that they should not have access to?

Generally, the audit is not interested in the actual content of the records themselves,
but in some cases, content is also checked, especially if the records audit includes
inspection of financial information. A variety of universal standards may need
to be complied with, for example, such as GAAP (generally accepted accounting
procedures). In that case, the way in which financial data is recorded in the records
themselves may also be included as part of the review audit.

It is good practice prior to an audit to review all authority documents
with which the organization needs to comply with to see if there have
been any updates or revisions to the stated requirements.

Deliverables from the records audit
At the end of the audit, a report is created that estimates compliance percentage,
record activities, and any suggestions for changes or improvements.

Once the report is completed, it should be made available and signed-off by
members of the Records Management steering committee and key stakeholders.
Audit sign-off can be done informally, but it is best if there is a formal process that
includes a sign-off sheet where each person who has reviewed the report signs the
sheet to indicate their review.

Chapter 10

[379]

The audit report should be treated as a record. It should be filed and maintained in
the records system.

Audits make sure that processes are running as intended. Regular audits promote
good business practices. An audit typically highlights areas of the business where
improvements to processes can be made.

If any shortcomings are identified in the audit, they should be prioritized by their
severity and urgency, and should be addressed accordingly. Another benefit of the
audit is that very often, totally outside of the records management process, the report
uncovers aspects of business processes that could also be improved.

If appropriate, it is often useful to communicate findings from the audit across the
whole organization when there is information in the results that the organization can
use to improve and learn.

The Audit tool
An audit will require that all aspects of the records system be examined. Much of the
audit goes into a review of the details of the File Plan structure. However, an audit
will typically try to address many questions around system usage too.

To support questions about usage, Alfresco provides an Audit tool that is available
from the Alfresco Records Management console.

Accessing the Audit tool
To get to the Audit tool, start with the Records Management dashlet, available from
the Share home page, and click on Management Console:

Searching Records and Running Audits

[380]

With the current version of Share, any user is able to add the Records
Management dashlet to their homepage dashboard. Adding the dashlet
would allow any user to be able to access the Management Console
page. While this may not be the best design, users without appropriate
access rights won't be able to get much farther than that. Each tool on the
console page requires permission rights in order to access it. Without the
appropriate permission, the user will be presented with a screen that says
Access Denied.
We'll see in the next chapter how permissions or capabilities are assigned
on a role basis. A user must belong to a role with the Access Audit
capability assigned to it in order to get to the Audit tool. Only the Records
Management Administrator and Records Management Records Manager
roles have this capability.

Using the Audit tool
On the console, Audit is the first tool that is listed. We'll discuss the Audit tool in
detail now, and then in Chapter 12, we will discuss some of the other features that
are available on the Records Management console.

Running an Audit report
By default, all actions of any significance within the Records Management system are
recorded to the Audit log. Once recorded, log entries cannot be edited or changed in
any way.

When we click on the Apply button on the upper-right of this screen, we see a
complete log of all activities. The report that is created displays a Timestamp for
each entry, the User who performed the action, the Role of the user, and the actual
Event or action that took place:

Chapter 10

[381]

Sometimes there is additional information associated with the event that can't easily
be fitted into the standard log report format. To see the complete set of information
captured for a particular event, click on the Details button on the far right of each row.

For example, when we click on the Details button of the third row, as shown in the
previous screenshot, we can get very complete information for what properties were
changed as part of an update metadata action:

Searching Records and Running Audits

[382]

Filtering the report by event
There is a drop-down called Event from which we can specify filters that will limit
the types of events displayed in the audit log list. The default is for all events to be
included in the list displayed.

From the Event drop-down list, we can see the types of actions that are being
recorded into the log. That list includes the following action types:

UI event label Internal key name for event
Accession accession
Closed Record Folder closeRecordFolder
Completed Accession accessionComplete
Completed Event completeEvent
Completed Transfer transferComplete
Created Object Create RM Object
Cut Off cutoff
Declared Record declareRecord
Delete Object Delete RM Object
Destroyed Item destroy
Filed Record file
Froze Item freeze
Login Failed Login.Failure
Login Succeeded Login.Success
Opened Record Folder openRecordFolder
Relinquished Hold relinquishHold
Reversed Completed Event undoEvent
Reversed Cut Off unCutoff
Reviewed reviewed
Set Record As A Digital
Photographic Record

applyDigitalPhotographRecord

Set Record As A Scanned Record applyScannedRecord
Set Record As A Web Record applyWebRecord
Set Record As PDF A Record applyPdfRecord
Setup Recorder Folder setupRecordFolder
Transferred Item transfer

Undeclared Record undeclareRecord

Chapter 10

[383]

UI event label Internal key name for event
Updated Disposition Action
Definition

broadcastDispositionActionDefinitionUpdate

Updated Disposition As Of Date editDispositionActionAsOfDate
Updated Hold Reason editHoldReason
Updated Metadata Update RM Object
Updated Review As Of Date editReviewAsOfDate
Updated Vital Record Definition broadcastVitalRecordDefinition

The auditable events that are displayed in the drop-down are specified in
the Java source file: HEAD/root/modules/dod-5015/source/java/
org/alfresco/module/org_alfresco_module_dod5015/audit/
RecordsManagementAuditServiceImpl.java. In that file, the
auditable event items are defined in a hash map. The key for each item
in the hash map is the name of the event used internally in the software.
This is shown in the second column. The first column is the value for
the hash entry and it corresponds to the text label for the event name, as
displayed in the UI.

Filtering the report by property
There are some event types that, as part of the event, make a modification or change
to metadata properties. It is possible to set filters that will show the items in the audit
log result list that involved specific metadata properties.

Searching Records and Running Audits

[384]

To filter by property, there is a drop-down under the label Property that shows all
Records Management properties organized in a way that is identical to how we saw
them presented on the Records Search page:

Filtering the report by user
In a similar way, it is also possible to filter the entries displayed in the audit log by
the user that was involved in each of the events.

By clicking on the Specify button under the Users label, it is possible to add filters
that will limit the results to include only entries that involved the specified users:

Chapter 10

[385]

Filtering the report by date
The audit log report can also be filtered based on the timestamps of the entries. It is
possible to specify a beginning date and an ending date for the date filter. Either one
or both of the From and To fields can be entered to specify the range criteria for the
filter. After applying the date filter, only log entries with timestamps within those
dates will be included in the results:

Audit log viewing options
By default, the maximum number of rows that are included in the result is 20. This
number can be changed by entering a different value in the Number of entries field
on the upper left.

The rows of the log can be sorted by clicking on the column header label of the row
that we wish to sort by. Each click on the row header will cause the results list to be
sorted, based on the row values for that column.

Searching Records and Running Audits

[386]

Viewing the full log
If the button View Full Log on the upper right is clicked, in a new browser window,
a complete log of all entries that match the filtering criteria will be displayed. The
entries are sorted in an ascending chronological order:

Filing the Audit log report
After an Audit log report has been run, it is possible to store the log results to the File
Plan. In both the View Full Log pop-up browser window and within the Audit tool
main screen, there are buttons labeled File As Record.

The same action is taken from both of these buttons. The complete report with all
entries and all descriptive data and properties are included in a report that is first
created and then filed. Even if the Audit tool limited the number of rows displayed
in the browser, the report that is filed will be inclusive of all rows that match the
filter criteria.

Chapter 10

[387]

After the record has been filed, a popup will be displayed that will indicate success:

The report is filed as a self-contained HTML file. Note, depending on the filtering
criteria, this file can be quite large.

Export the Audit log report
Both the Audit tool and the full log pop-up screens have buttons to Export the Audit
log report. The file exported is the same HTML report that we just discussed for the
File As Record button.

Stopping, starting, and clearing the Audit log
By default, audit logging for Records Management is turned on immediately by
default after installing the Records Management site.

It is recommended that you do not turn off logging. While logging to the Audit log
can take up some storage space, it isn't really enough to warrant concern. The value
of logging far outweighs any storage costs involved in maintaining the logs. If the
volume of storing log information becomes a problem, consider the use of the audit
clear capability that we will discuss later in this section.

If you still decide that you don't need to be logging or, for some reason, do not want
to perform system logging, the audit logging for Records Management events can be
turned off.

On the upper left of the Audit tool, there is a Stop button that can turn it off:

Searching Records and Running Audits

[388]

Stopping logging though does not clear out any log entries that have already
occurred, and audit reports can still be run against the information that has
already been collected.

The Stop button toggles into a Start button once the button is pressed again.
Turning logging back on is just a matter of clicking on the button again.

There is also a Clear button on the Audit tool screen. Used properly, this feature
can be very useful, especially for systems with lots of activity. However, clearing
the audit log should be done only after careful thought.

Clicking on Clear will clear all log data that is currently in the system. It can be used
in a scenario where audit log reports are periodically run; those reports are filed into
the File Plan, and then, immediately after filing the reports, the audit log is cleared.
In this way, the data stored internally to support the audit log is the only data that
has been collected since the last report period.

Making a report in this way will allow us to keep a record of all system activity,
but the data will not be kept active, and the clearing out of that data potentially
can provide a small bump in the performance of the system.

How does it work?
In this "How does it work?" section, we look in detail at how repository webscripts
are used to assist the Share-based Records Management web pages retrieve data to
support search and audits.

The Records Search page
As we've done previously, it is a matter of tracing back from the pageid to determine
how a Share page works. Let's do this one more time, this time by using the URL of
the Records Search page.

From the tomcat\webapps\share\WEB-INF\classes\alfresco\site-data\
presets\presets.xml file, we can see the site page definitions for the Records
Management site:

<sitePages>[{"pageId":"documentlibrary"}, {"pageId":"rmsearch"}]</
sitePages>

When clicking on the Records Search link, we can also see that the URL for the page
is http://localhost:8080/share/page/site/rm/rmsearch. From this, we know
that the pageid for Records Search is rmsearch.

Chapter 10

[389]

If we navigate to tomcat\webapps\share\WEB-INF\classes\alfresco\site-
data, and then look in the pages directory, we find the page description file for
pageid rmsearch. From this file, we notice that the value for <template-instance>
is rmsearch.

By navigating to site-data\template-instances, we can then find the descriptor
file rmsearch.xml that identifies the <template-type> value as org/alfresco/
rmsearch.

Then, looking under the tomcat\webapps\share\WEB-INF\classes\alfresco\
templates\org\alfresco directory, we can find the FreeMarker template file
rmsearch.ftl that describes the layout for the Records Search page. It's a small file
and includes standard <@region> tags that place the header, title, navigation,
and footer areas.

The body element is where the unique component for this page is defined. There is
just this one component:

<div id="bd">
 <div class="yui-t1">
 <div id="yui-main">
 <@region id="search" scope="template" protected=true />
 </div>
 </div>
</div>

Here we see the <@region> called search defined with template scope. Next, we
can look up the URL, which is the unique identifier for this region. The file tomcat\
webapps\share\WEB-INF\classes\alfresco\site-data\components\template.
search.rmsearch.xml defines the URL as /components/rmsearch/rmsearch.

We can look up that URL using the service URI tool at http://localhost:8080/
share/page/index/uri/. There we can see that the descriptor for this user interface
webscript is alfresco/site-webscripts/org/alfresco/components/rmsearch/
rmsearch.get.desc.xml.

From the location of the descriptor filename for the search component, we can
identify the other relevant webscript files in that same directory as rmsearch.get.
head.ftl, rmsearch.get.html.ftl, rmsearch.get.js, and rm.search.get.
properties.

The controller for the component rmsearch.get.js adds custom metadata
properties to the model. The file rmsearch.get.html.ftl is where the main
FreeMarker layout for the page is located.

Searching Records and Running Audits

[390]

DataSource and data webscript
Searches from the Records Search page are sent back to a data webscript in
the repository. Within the client-side JavaScript file tomcat\webapps\share\
components\rmresults-common\rmresults-common.js, the framework to call the
webscript is set up.

The DataSource includes the base URI for communicating with the webscript. The
onReady() method of the JavaScript Alfresco.RecordsResults that is defined in
the JavaScript file initializes the DataSource:

// DataSource definition
var uriSearchResults = Alfresco.constants.PROXY_URI +
 "slingshot/rmsearch/" + this.options.siteId + "?";
this.widgets.dataSource = new
 YAHOO.util.DataSource(uriSearchResults);
this.widgets.dataSource.responseType =
 YAHOO.util.DataSource.TYPE_JSON;
this.widgets.dataSource.connXhrMode = "queueRequests";

Depending on your configuration, the URI will resolve to something like
http://localhost:8080/share/proxy/alfresco/slingshot/rmsearch/rm?.

The signature for the service is /alfresco/service/slingshot/rmsearch/{site}?
query={query?}&sortby={sortby?}.

The webscript descriptor file for the service is located in the Alfresco repository
WAR in the tomcat\webapps\alfresco\WEB-INF\classes\alfresco\templates\
webscripts\org\alfresco\slingshot\rmsearch directory. The results are
formatted with the rmsearch.get.json.ftl file. The controller for the webscript is
the file rmsearch.get.js.

In this file, we see that the search query is formatted and uses the FTS-Alfresco
query language.

Further, the getSearchResults() function in this file locks down the query so
that the search is constrained to be only within the File Plan:

// suffix the rm doclib fileplan site PATH query
var alfQuery = 'PATH:"' + SITES_SPACE_QNAME_PATH + 'cm:' +
 search.ISO9075Encode(siteId) + '/cm:documentLibrary//*"';

// build up final query components
if (query != null && query.length != 0)
{
 alfQuery += ' AND (' + query + ')';
}

Chapter 10

[391]

The default maximum number of search results rows to display is the property
maxResults, which is set as 500 in the file rmresults-common.js.

Saved searches
We saw above that saved searches for the Records Management site are stored in
the Repository |Sites | rm area of the repository.

We can see that saved searches are saved in the JSON format. For example, the
content of a saved search file looks something like the following:

{
 "sort": "rma:identifier/asc",
 "query": "(ASPECT:\"rma:record\" AND ASPECT:\"rma:declaredRecord\")
 AND (document) AND NOT ASPECT:\"rma:versionedRecord\"",
 "description": "",
 "name": "document",
 "params": "terms=document&records=true&undeclared=false&vital=false
&folders=
 false&categories=false&series=false&frozen=false&cutoff=false"
}

When the Records Search page is initialized, it retrieves the list of available saved
searches to include in the drop-down menu attached to the Saved Searches button.

The client-side JavaScript file tomcat\webapps\share\components\rmsearch\
rmsearch.js retrieves the saved searches in the initialization method onReady():

// retrieve the public saved searches
// TODO: user specific searches?
Alfresco.util.Ajax.request(
{
 url: Alfresco.constants.PROXY_URI +
 "slingshot/rmsavedsearches/site/" + this.options.siteId,
 successCallback:
 {
 fn: this.onSavedSearchesLoaded,
 scope: this
 },
 failureMessage: me._msg("message.errorloadsearches")
});

The URL evaluates to something like http://localhost:8080/share/proxy/
alfresco/slingshot/rmsavedsearches/site/rm.

Searching Records and Running Audits

[392]

We also note the comments in the code here that there are no user-specific
saved searches. Saved searches are available for all Records Management
users to access.

Custom properties
Custom properties can be assigned to records, Folders, Categories, and Series.
When the rmsearch page is first invoked, the page collects any custom properties to
include as searchable parameters.

The controller file for the rmsearch page, tomcat\webapps\share\WEB-INF\
classes\alfresco\site-webscritps\org\alfresco\components\rmsearch\
rmsearch.get.js, connects to the Alfresco repository and calls the backend data
webscript to retrieve any custom properties.

Four service calls are made, one for each of the four different Records Management
object types. Examples of the URLs that are called include:

http://localhost:8080/alfresco/service/api/rma/admin/custompropertyde
finitions?element=record,

http://localhost:8080/alfresco/service/api/rma/admin/custompropertyde
finitions?element=recordFolder, and

http://localhost:8080/alfresco/service/api/rma/admin/custompropertyde
finitions?element=recordCategory

We will look again at custom Records Management properties in Chapter 12, but for
now, let's see what happens after a custom property called Archive_Marking for a
record Series is defined. In this case, the data webscript to search custom properties
attached to a Series returns a JSON response that looks like the following:

{
 "data":
 {
 "customProperties":
 {
 "rmc:Archive_Marking":
 {
 "dataType": "d:text",
 "label": "Archive Marking",
 "description": "",
 "mandatory": false,
 "multiValued": false,
 "defaultValue": "",

Chapter 10

[393]

 "protected": false,
 "propId": "Archive_Marking",
 "constraintRefs":
 [
]
 }
 }
 }
}

It's interesting to note that the content model prefix comes back as rmc that stands for
the Records Management Custom model (namespace http://www.alfresco.org/
model/rmcustom/1.0).

The Records Management Custom Model is stored as an object in the Alfresco
Repository in the path \Company Home\Data Dictionary\Records Management\
recordsCustomModel.xml.

The custom metadata property Archive Marking shows up at the bottom of the
Metadata pick list:

The Audit tool
Let's also look a bit at some of the internals of the Audit log. We've already seen
quite a bit about how Share Spring-Surf-based pages are constructed. Rather than
looking at the page construction in this section, in this case, let's trace the audit data a
bit to see how it is being retrieved.

If we look at the Records Management Console page, we can find that the client-side
JavaScript code that manages the dynamics of the Audit tool is in the file tomcat\
webapps\share\components\console\rm-audit.js.

Searching Records and Running Audits

[394]

The onReady() method in that file sets up the URI of a webscript service call for
determining the contents of the audit log:

onReady: function RM_Audit_onReady()
{
 this.initEvents();
 //initialize data uri
 //an audit log for node and not in console (all nodes)
 if (this.options.nodeRef)
 {
 var nodeRef = this.options.nodeRef.split('/');
 this.dataUri = YAHOO.lang.substitute(Alfresco.constants.PROXY_URI
 + "api/node/{store_type}/{store_id}/{id}/rmauditlog", {
 store_type: nodeRef[0], store_id: nodeRef[1], id: nodeRef[2]
 });
 }
 else {
 this.dataUri =
 Alfresco.constants.PROXY_URI+'api/rma/admin/rmauditlog';
 }

 this.initWidgets();
}

We find that the URL is something of the form http://localhost:8080/share/
proxy/alfresco/api/rma/admin/rmauditlog.

If we dump the contents of the JSON response from using just this URL request
to a browser with no additional parameters, we will see that it returns a complete,
unfiltered list of all audit log entries.

This URL also takes a number of parameters that can be used to filter the results:

Parameter name Description
size The maximum number of entries to return.
user Filter results to include only entries from this user.
event Filter results to include only entries that match this event.
from Filter results to include only log entries after this date.

(yyyy-MM-dd format).
to Filter results to include only log entries before this date.

(yyyy-MM-dd format).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

[395]

For example, a request to the webscript to see the last 10 events that were performed
by the user admin to update the metadata property cm:title during the month of
September, 2010 would look like the following:

http://localhost:8080/share/proxy/alfresco/api/rma/admin/rmauditlog
?user=admin&event=Update%20RM%20Object&size=10&property=cm:title&fr
om=2010-09-01&to=2010-09-30.

Summary
In this chapter, we discussed the Records Search page and the Audit tool of the
Records Management console. We also discussed the importance of setting up a
policy for having regular records program audits and how the Audit tool in the
Records Management console can be used to assist in performing audits.

In particular, we covered the following topics in this chapter:

•	 How to specify search criteria in the Criteria tab of the Records Search page
•	 How to construct complex FTS-Alfresco searches
•	 How to apply search filters and ordering rules
•	 How to escape search criteria that use special characters with QNames,

property names, and values
•	 How to save and reuse queries in both the Records Search and File Plan

pages
•	 How to run and file audit reports

At the end of the chapter, in a "How does it work?" section, we examined, in detail,
some developer internals related to the following items:

•	 How internally the Share page in Records Management calls a repository
webscript to carry out records search

•	 How saved searches are stored and retrieved
•	 How the repository webscript supports the retrieval of audit information

In the next chapter, we will discuss how to configure security and permissions for
the Alfresco Records Management system.

Configuring Security
and Permissions

Keeping records secure is one of the highest priority goals of any Records
Management system. By definition, the Records Management system is designed to
store documents that are vital to the operations of the organization. In this chapter,
we will examine how security and access controls can be applied so that users are
able to access only the functionality and content that is appropriate for their role.

In particular, we will describe in this chapter:

•	 How to create users and groups within Alfresco Share
•	 How to view the permissions of existing Records Management roles
•	 How to modify and create new Records Management roles
•	 How to set access rights for areas in the File Plan

Creating users
Before a user is able to gain access to the records File Plan, they must have access to
the Share Records Management site, and before getting access to the site, they must
first become a user of the Share application. Let's look briefly at how Share users are
created and how users are then able to subscribe to sites within Share.

Configuring Security and Permissions

[398]

Adding a new Share user
The tool that allows us to create a new Share user is available from the Tools area
within the Admin Console. To get to this page, as a user admin, we click on the
Admin Console link that can be found at the top of every Share page. After that,
we can then move into the Users tool that is available from the left-hand panel
navigation area:

There is a Search field at the top of the page that lets us check to see if a user that
we plan to add is already in the system. Users can be searched for by full or partial
matches to either their first name or their last name.

There are some limitations to User Search. A search by user name or
e-mail address will fail, and there is a limit of displaying only 100 users at
one time. It also isn't possible to get a complete list of all users from this
screen. One unwieldy solution to find all users in the system is to use the
search criteria "A | B | C | D | E | F | G | H | I | J | K | L | M | N | O
| P | Q | R | S | T | U | V | W | X | Y | Z".

To add a new user, we click on the New User button. After doing that, we are
presented with the screen for adding a new user.

At a minimum, we need to enter the following information for each new user
that we create:

•	 First Name
•	 Last Name
•	 Email address
•	 User Name
•	 Password

Optionally, two other pieces of information can be entered when a new user
is created:

•	 Groups that the user will belong to

Chapter 11

[399]

•	 Maximum disk space Quota that the user may consume (leaving bank
implies no restriction)

After entering the user information, we click on Create User to add the user to the
system. If there are many users to be added at one time, the Create and Create
Another button can save some time by keeping the Add User page open and clearing
the fields after a user is entered so that a new user can be immediately entered after
one is created:

There is a lot more user information that can be tracked and managed than what was
collected on the user creation form. This additional information can be entered and
viewed on the Profile page for the user.

Configuring Security and Permissions

[400]

If we search for the new user that we just created, we can then click on the username
in the user list row. We then see the Profile page for the user. While administrators are
able to update the profile page for a user, users can also update their own profiles:

New user access to Share
After a user has been created in the system, they will then be able to log in to Share.
Newly created users will not yet be members of any sites within Share. To join a
Share site, the user will either need to subscribe to or be invited to the site.

Chapter 11

[401]

When the new user logs in to Share, they will immediately be sent to their homepage
dashboard. The dashboard page can be customized by each user and the layout that
they select will be remembered as a preference and available each time they visit
their homepage.

User admin
Most of our discussion in this book about operations within the Records
Management site so far has been from the perspective of the user admin. It is vital
that the admin account remains secure. Admin either has the privilege to perform
any operation in the system or is in the position to be able to acquire any privileges
that are not already assigned.

The user admin basically holds all the keys to the system and is thus an important
user account that needs to be secured. The default password for the user admin
is admin. This is a well known and insecure password that should be changed,
especially in a production system, at the very first opportunity.

Groups and Records Management
Groups provide a way to aggregate users and other groups into a single logical entity
that can be used when performing operations like assigning permissions. In Alfresco,
there is a default user group called EVERYONE. Every user in the system is at least a
member of the EVERYONE group and most users also belong to other groups.

To examine groups within Share, we return to the Admin Console and this time we
bring up the Groups tool:

The layout of the Groups tool is very similar to that of the Users tool. As with Users,
there is a group Search field at the top of the page. In a similar way, a search here also
requires that the search criteria entered be at least one character long. Because of this
limitation, finding a comprehensive list of all groups using the Search field isn't easy.

Configuring Security and Permissions

[402]

Browsing groups
Unlike the Users tool, the Groups tool has another option for browsing over all
entries. There is a button to the right of the page called Browse. The Browse button
makes the process of finding and managing groups much easier to use. When we
click on the Browse button, we get a list of all the available groups, and within the
Groups browse tool, we are also able to inspect, add, and edit groups:

All groups except the EVERYONE group that all users belong to are shown here.
The bottom five groups are of particular interest to us because they are specific to
Records Management.

The Records Management groups will only be visible within the
Groups tool after the Records Management site has been created
and has been accessed at least once.

The Records Management groups are:

•	 Records Management Administrator
•	 Records Management Power User
•	 Records Management Records Manager
•	 Records Management Security Officer
•	 Records Management User

Chapter 11

[403]

These groups are directly associated with the roles and permissions that relate to
the specific duties of the different types of users within the Records Management
program.

Alfresco groups are used in two different ways with Records Management. Groups
aggregate many users into a single entity that, when operated on, applies the
operation to all users contained in the group. For example, inviting a group to
become a member of a Share site causes all users in that group to be invited.

The five Records Management groups that we discussed above are special in
that they are directly associated with the roles and permissions available within
Records Management. These groups are managed by the Define Roles tool within
the Records Management console. When a new role is created, a new group
corresponding to that role is also created. Similarly, when the role is deleted, the
group corresponding to that role is also deleted.

Adding a new group
To the right, above the list of available groups, there is a small circular icon. If we
move our mouse over it, we see that this button lets us create new groups.

To create a new Records Management role and the associated group for
managing users within that role, use the Define Roles tool in the Records
Management console.

Groups created from this screen can be used for performing operations like inviting
by group to join a Share site. We can also assign a group created from this screen to
one of the groups associated with a Records Management role.

Configuring Security and Permissions

[404]

Deleting a group
From the left-most list of the Group Browse feature, it is possible to delete any of the
standard Share groups. Delete is also available from the list returned after a search
by group name:

Groups created by the Define Roles tool should not be deleted using
this screen. These types of groups are automatically deleted when their
associated role is deleted.

Chapter 11

[405]

Editing groups
Clicking on the pencil icon next to the group name lets you edit the display name for
the group:

Once a group is created, it isn't possible to change the group
Identifier name.

Configuring Security and Permissions

[406]

Adding members to a group
We can add members to a group by first selecting the group that we would like to
add to, and then clicking on the "Add user" icon in the list to the right of the group
list. It is also possible to add not only users to the group, but other groups also:

Adding users to groups associated with a Records Management role automatically
assigns the permissions associated with that role to the user.

Member access to the Records
Management site
Access to the Records Management site is only available to those users who have
subscribed to it. The Records Management site is, by default, a public site within
Share and available only by subscription to Share users.

Chapter 11

[407]

Subscribing to the Records Management site
It is possible for a user to subscribe to the Records Management site by going to the
Site Finder page and searching for the site called rm and then clicking on the Join
button once it has been located:

At this point, the user has access to the dashboard of the Records Management site,
but before being able to access any records in the File Plan, the user also needs to be a
member of one of the Records Management role groups.

If we want to prevent users from being able to self-subscribe to the site, we can
change the visibility of the site from Public to Private. To do that, we log in as the
user who is the site manager of the Records Management site, that is, the user who
originally installed it.

We then access the dashboard of the Records Management site. From the More menu
next to Customize Dashboard, select Edit Site Details:

Here we have the option of either changing the site visibility to Public, but
moderated, or to Private.

Configuring Security and Permissions

[408]

Requesting access to the moderated Records
Management site
If we change the site from being wide open to the public to one being public but
moderated, the Records Management site can still be found by users that are not
members, but now, when users attempt to join the site, they instead see an option
to Request to Join the site. They are no longer able to get immediate access to the
site after joining. Their request to join the site must first be approved by the owner
of the site:

After the user requests to join, the owner of the site will receive a notification of
the request. Because we are the owners of the site, when we log back in as the user
admin, we can see the request to join the site. It is located in the task list dashlet
of the Share main dashboard. From the task list, we then have the option of either
accepting or rejecting the request:

Chapter 11

[409]

If the My Tasks dashlet is not available on the dashboard, it can be added
to it from the Customize Dashboard screen.

After the user is approved, they will have full access to the Records Management
site, but they will not have access to records in the File Plan until they are added
as a member of one of the Records Management groups.

Access to a private Records Management site
The alternative to setting up the Records Management site as either a publicly
moderated or publicly unmoderated site is to make the Records Management
site private. We do this as shown above in the Edit Site Details dialog.

When the site is changed to private, the only way new members can be added to
the site is for the site owner to send an invitation to them.

Invitations are sent from within the Records Management site. As Site Manager
and owner of the site, we have an Invite button available from the homepage of the
Records Management site. If we click on this, we will see a screen that lets us choose
users that we would like to invite to the site:

Configuring Security and Permissions

[410]

After searching for the user names, we add the names to the list of people we would
like to invite and then set a site role for those users.

When we click on the Invite button, an e-mail invitation is sent to the selected users:

The FreeMarker template for the e-mail invitation sent out is located
in the Alfresco repository and can be edited. The file can be found at
Repository/Data Dictionary/Email Templates/invite/
invite-email.ftl.

The user will also receive a new item in their task list, which they can see on the
Share main dashboard:

Chapter 11

[411]

The user then has the option to Accept or Reject the invitation for becoming
a member.

Creating Records Management roles
A permission is the right that a user or group has to access a particular functionality
in Alfresco.

Roles and permissions
In order to create very granular control over the types of functionality that users
can access within the Records Management system, Alfresco has defined nearly 60
unique permissions.

A role for a user or group in the Records Management system is a collection of those
privileges. The large number of granular permissions provides very detailed control
over the way in which a role can be defined.

Configuring Security and Permissions

[412]

Access controls applied to the File Plan
For each of the five Records Management groups that we've already seen, there are
a corresponding set of five roles, and there is a one-to-one mapping of each group to
a role.

The top-level node of the Records Management File Plan, the rm site
documentLibrary node, is secured by applying those roles as access control entries
to the documentLibrary node. Children of this root node for the File Plan inherit the
same access controls unless specifically overridden.

If we go to the Alfresco JSF Explorer client, we can see how the access controls are
applied to the File Plan root node. In the client, we navigate to the space called
Company Home / Sites / rm / documentLibrary.

From the More Actions drop-down, we can click on Manage Space Users. There
we can see that the five groups have been associated with the appropriate roles and
applied to the root node. Actually, what we're seeing in the Roles column of this
page is a list of permissions (really permissionGroups) rather than the name of the
Records Management roles:

Unless a user belongs to one of the five Records Management role groups (or other
role groups that may have been defined via the Define Roles tool), that user will not
have the permissions to perform operations in any part of the File Plan.

Chapter 11

[413]

In order to provide the flexibility of roles that can be easily edited from the user
interface, Records Management roles are really a sort of super-role that consists
of many individual roles or permissionGroups, most of which consist of only a
single permission.

A similar view of the permissions that are associated with the documentLibrary
node of the Share Records Management site is available through the Node Browser.
A partial listing of all the permissions assigned to this node is shown in the
screenshot below:

Viewing and editing the Records Management
roles
Neither Share nor the Alfresco JSF Explorer client has a standard interface for editing
roles. Roles are normally set up as permissionGroups and defined within an XML
permission model file. For Records Management, the ability to edit roles with the
ability to easily add or delete permissions to the role was added as a feature of the
Management console.

The roles tool for Records Management can't be used for editing any roles
outside of Records Management.

Configuring Security and Permissions

[414]

Browsing role permissions
We can get to the Records Management Define Roles tool by going into the
Management console and then clicking on the Define Roles entry in the left-hand
navigation panel:

The Define Roles tool consists of a table with two columns. The entries in the
first column show the available Records Management Roles. In this screenshot,
we can see the five default roles. When one of the role entries in the first column
is highlighted, then the second column, labeled Capabilities, shows the set of
permissions that are enabled for that role.

In the next table, we can see a comparison of the default permissions that are
available for each of the five Records Management roles.

We notice that the Records Management Administrator and Records Manager roles
are very similar. The main distinction between the two is that the Administrator is
able to manage access controls:

Chapter 11

[415]

Capabilities

A
dm

in
is

tr
at

or

Po
w

er
 U

se
r

R
ec

or
ds

 M
gr

Se
cu

ri
ty

 O
ffi

ce
r

U
se

r

Records

Declare Records DeclareRecords √ √ √ √
Move Records MoveRecords √ √
Undeclare Records UndeclareRecords √ √
View Records ViewRecords √ √ √ √ √
Folder Control
Close Folders CloseFolders √ √ √ √
Create Modify Destroy
Folders

CreateModify
DestroyFolders

√ √ √ √

Declare Records in Closed
Folders

DeclareRecordsInClosed
Folders

√ √ √ √

Re-Open Folders ReOpenFolders √ √ √ √
Metadata Control

Edit Declared Record
Metadata

EditDeclared
RecordMetadata

√ √

Edit Non-Record
Metadata

EditNonRecordMetadata √ √ √ √

Edit Record Metadata EditRecordMetadata √ √ √ √
Vital Records

Cycle Vital Records CycleVitalRecords √ √ √ √
Planning Review Cycles PlanningReviewCycles √ √ √ √
Update Vital Record
Cycle Information

UpdateVitalRecord
CycleInformation

√ √

References and Links

Change or Delete
References

ChangeOrDeleteReferences √ √

Delete Links DeleteLinks √ √

Configuring Security and Permissions

[416]

Events

Add Modify Event Dates AddModifyEventDates √ √ √ √
Create Modify Destroy
Events

CreateModifyDestroyEvents √ √

Cutoff

Approve Records
Scheduled for Cutoff

ApproveRecords
ScheduledForCutoff

√ √

Create Modify Destroy in
Cutoff Folders

CreateModifyRecords
InCutoffFolders

√ √

Disposition and Transfers

Authorize Nominated
Transfers

AuthorizeNominatedTransfers √ √

Authorize All Transfers AuthorizeAllTransfers √ √
Delete Records DeleteRecords √ √
Destroy Records DestroyRecords √ √
Destroy Records
Scheduled for Destruction

DestroyRecordsScheduled
ForDestruction

√ √

Manually Change
Disposition Dates

ManuallyChange
DispositionDates

√ √

Trigger An Event TriggerAnEvent √ √
Update Trigger Dates UpdateTriggerDates √ √
Hold Controls
Extend Retention Period
Or Freeze

ExtendRetention
PeriodOrFreeze

√ √

Unfreeze Unfreeze √ √
View Update Reasons for
Freeze

ViewUpdateReasons
ForFreeze

√ √

Audit

Access Audit AccessAudit √ √

Delete Audit DeleteAudit √ √
Declare Audit As Record DeclareAuditAsRecord √ √
Enable Disable Audit By
Types

EnableDisableAuditByTypes √ √

Export Audit ExportAudit √ √
Select Audit Metadata SelectAuditMetadata √ √

Chapter 11

[417]

Roles and Access Rights

Create Modify Destroy
Roles

CreateModifyDestroyRoles √ √

Create Modify Destroy
Users and Groups

CreateModifyDestroy
UsersAndGroups

√ √

Display Rights Report DisplayRightsReport √ √
Manage Access Controls ManageAccessControls √
Manage Access Rights ManageAccessRights √ √
Password Control PasswordControl √ √
File Plan Metadata, Lists, and E-mail
Attach Rules to Metadata
Properties

AttachRulesToMetadata
Properties

√ √

Create and Associate
Selection Lists

CreateAndAssociate
SelectionLists

√ √

Create Modify Destroy
File Plan Metadata

CreateModifyDestroy
FileplanMetadata

√ √

Create Modify Destroy
File Plan Types

CreateModifyDestroy
FileplanTypes

√ √

Create Modify Destroy
Record Types

CreateModifyDestroy
RecordTypes

√ √

Create Modify Destroy
Reference Types

CreateModifyDestroy
ReferenceTypes

√ √

Edit Selection Lists EditSelectionLists √ √
Make Optional
Parameters Mandatory

MakeOptionalParameters
Mandatory

√ √

Map E-mail Metadata MapEmailMetadata √ √
Classified Records
Create Modify Destroy
Classification Guides

CreateModifyDestroy
ClassificationGuides

√ √ √

Create Modify Destroy
Time Frames

CreateModifyDestroy
Timeframes

√ √

Map Classification Guide
Metadata

MapClassification
GuideMetadata

√ √

Update Classification
Dates

UpdateClassificationDates √ √ √

Update Exemption
Categories

UpdateExemptionCategories √ √ √

Upgrade Downgrade and
Declassify Records

UpgradeDowngradeAnd
DeclassifyRecords

√ √ √

Configuring Security and Permissions

[418]

Editing role permissions
A role shown within the Define Roles tool can be edited by first highlighting the
role name in the first column on the tool and then clicking on the Edit Role button.

On the Edit Role page, it is possible to edit the permissions that are assigned to the
role. Because there are so many permissions, they have been grouped into related
feature categories. It is possible to select all permissions of a feature category by
selecting the Select All button to the upper-right of that group of entries.

After the new permission settings for the role is complete, we can then click on the
Save button at the bottom of the page to update the settings.

Note that there is no user interface to create new permissions, only the ability to
assign or remove permission settings for a given role:

Chapter 11

[419]

Creating a new role
A new role can be created by clicking on the New Role button in the Management
Console. We note that the pages for creating and editing roles are very similar. When
creating a new role, it is necessary to assign a unique name for the role and to then
fill out the checkboxes for permissions that are to be assigned to the role.

When we're finished, we press the Create button. The new role will be created
and added to the list of available roles. You might be wondering how do we then
associate a group with this new role, and do we then need to manually create a
group and associate it with the role? It turns out that we don't need to worry about
any of that.

If, after creating a new role, we go to the Share Admin Console and navigate into the
Groups area, we'll see that a new group has been created with the same name as the
new role name that we just created. The group and role are automatically linked.

We can also go over to the Alfresco JSF Explorer client and look at the access controls
that are set on that space after creating the new role. When we do that, we can verify
that the access controls have automatically been applied to the File Plan root node.

Deleting a role
Existing roles can be deleted by clicking on the Delete Role button in the
Management Console.

If we try deleting the new role that we just created, we get a popup message that the
role was successfully deleted. If we then go back and look in the Groups tool in the
Administration Console, we'll see that the group has also been removed. Similarly, if
we go to the Explorer client and check the access control entries for the File Plan root
node, we'll see that the entry for the new role that we created has now been removed.

So, we see that, behind the scenes, the Records Management console is automatically
keeping the Records Management groups, roles, and access control entry information
in sync for us.

Read and file permissions
There are two additional permissions that are not set using the Define Roles tool.
These additional two permissions are:

•	 File a record
•	 Read a record

Configuring Security and Permissions

[420]

The permission to file a record is actually a superset of the permission to read a
record. That is, if you can file a record, you can also read a record.

The Records Management administrator, by default, automatically has the
permission to file a record included as part of the role for the administrator.
This permission is not available for edit from the Define Roles tool, so it can't
be removed from the administrator role, at least from the user interface.

Since the administrator role is applied at the root node of the File Plan, by default,
all users in the administrator role will have complete rights to both file and read all
parts of the File Plan. Because these permissions aren't exposed via the Define Roles
tool, no other role can have these access control permissions automatically applied at
the File Plan root.

Within the File Plan, it is possible to set read and file permissions. Users without
these permissions, even if they are members of the Records Management site, will
not be able to see any part of the File Plan.

The permission for a node within the File Plan is set by navigating to the record
container or record on which the permissions are to be set, and then clicking on the
Manage Permissions option for that item to specify the permissions:

Chapter 11

[421]

On the next screen, Read and File permissions can be managed for users and groups:

A user is added by clicking on the Add User or Group button. After doing that, a new
row is added to the list of Users and Groups. By default, the new user will be added
with the permission of Read Only. The drop-down list in the Permissions column for
each row allows us to change the permission associated for that user or group.

Permissions are inherited by the child members of the node to which the permission
was applied. For example, granting file and read access to a user at the record Series
level will result in letting the user have file and read permission for all Categories,
Folders, and records underneath the Series node.

If permissions to the user or group are not assigned at the top record Series level in the
File Plan, the user will be able to see the parent containers in the File Plan that need to
be navigated to get to the container to which the user has been granted access.

Consider, for example, adding access for a user at the Folder level in this path:
Administrative/Document Forms & Templates/Corporate Report Templates.

If we grant read permission to a user for the Folder Corporate Report Templates,
when accessing the File Plan, that user would first see a record Series called
Administrative, and within that Series, there will be a record Category called
Document Forms & Templates. However, no other Series, Category, or Folder
containers would be visible to the user.

Note that it's not possible to apply permissions directly at the
record level.

Configuring Security and Permissions

[422]

The User Rights Report
From the Records Management Console, there is another tool that is useful
for tracking permissions and role information. It provides a useful report that
gives a quick summary of the distribution of users among the different Records
Management roles. The tool is called the User Rights Report. In the list of tools on
the Management Console, it is the last in the list of available tools:

The User Rights Report is divided into three sections, showing information about
Users, Roles, and Groups. The parts of the report labeled Groups refer to all groups
other than the groups associated with Records Management roles. These Groups are
the ones that have membership in the Share Records Management site, and users are
marked as being site members as a result of belonging to a group that is a member of
the site.

The first section of the report lists Users and their Roles and Groups. The second
part of the report lists the information by Roles and shows the users in each of the
roles. The final section lists Groups that are members of the Records Management
site and the users that are in those groups.

Chapter 11

[423]

The User Rights Report tool is a report and, as such, provides
useful information, but it doesn't provide a way to edit or
change any of the information. To do that, the Define Roles tool
on this page should be used.

How does it work?
In this "How does it work?" section for this chapter on security, we will look
primarily at how the data webscripts are used in the site webpages to retrieve
information from the repository about users and roles. We'll also look at the
permissions model for Records Management and at the file that is used to bootstrap
the system with information about the five default Records Management roles.

Admin console—users
In the Administration console, the Users tool enables the management of users,
allowing users to be created, user data to be edited, and users to be deleted.

On the Users page, there is a tool to search and view user information. User search
in the Users admin tool is a bit frustrating because it isn't possible to see all the users
in a single list. The field requires that at least one non-wildcard character be entered
before the search is attempted.

The search operation on the Users page is made with a call to a repository webscript
that accepts a filter, which can limit the users found. If we dig in a bit, we see that the
limitation of a single character minimum length is enforced by the client, but it is not
a limitation of the webscript.

The data webscript in the repository takes two parameters: filter and maxResults.
The client-side JavaScript file, tomcat\webapps\share\components\console\
users.js, builds the request URL and includes a filter based on the string entered
in the search field. By testing the URL in the browser, we can find out that when the
filter is omitted as a parameter in the webscript URL, all users will be returned in the
results:

http://localhost:8080/share/proxy/alfresco/api/
people?filter=T&maxResults=100

Configuring Security and Permissions

[424]

Users in the repository
When a user is created in the repository, two types of objects are created for the
user. A cm:person object is created to manage user profile information and a
usr:user object is created to store information needed for Alfresco authentication.
Internally, the AuthenticationService manages the usr:user objects and the
PersonService handles the cm:person objects. usr:user objects are stored in the
user://alfrescoUserStore and cm:person objects are stored in the workspace://
SpacesStore stores of the repository. In the following table, we see and compare
how user metadata is divided between these two object types:

Data Store metadata properties
usr:user object

(Stored in user://
alfrescoUserStore/system/
people/)

cm:person object

(Stored in workspace://
SpacesStore/system/people)

enabled email

password userName

username owner

credentialsExpire lastName

accountExpires firstName

accountLocked middleName

homeFolder

organizationId

organization

telephone

mobile

+ more…

The complete content model definition for the cm:person object can
be found in the Alfresco file tomcat\webapps\alfresco\WEB-INF\
classes\alfresco\model\contentModel.xml. The content model
for usr:user can be found in the file userModel.xml, as described in
the next section.

Chapter 11

[425]

Users as usr:users
The usr:user objects are used to hold authentication information for users when
Alfresco authentication is used.

The object usr:user is defined in the user content model. The file for the content
model is a little hard to find. It is located in tomcat\webapps\alfresco\WEB-INF\
lib\alfresco-repository-3.3.jar. In that JAR file, the userModel.xml file can
be found in the org\alfresco\repo\security\authentication directory:

Users as cm:persons
When a new user is added, the user profile information is added to the
workspace://SpacesStore store. We can check this by using the Node Browser tool
in the Admin area of the Alfresco JSF Explorer client.

Configuring Security and Permissions

[426]

The profile information is added as the type cm:person. One entry of this type exists
for every user in the system. We can find these objects by looking under the path
system/people of the SpacesStore store. At that node in the repository, we see that
the children are of type cm:person nodes and correspond to the users in the system:

If we then click through into one of the child nodes corresponding to a user, we will
then see the profile information stored for that user:

Chapter 11

[427]

There is a lot of information on the page for the node. If we scroll to the bottom of
the Node Browser page, we can see a section that shows the parent nodes of the child
cm:person node that we've navigated into. You may have expected to see a single
parent node listed there—the one corresponding to the system/people node from
where we navigated. But there's more than just that one parent listed. That node is
there, but we also see that there are quite a few other parent nodes in the list:

In this example, the cm:person node for the user bill has three types of parent-
node Association Types, as seen in the last column of the table, namely, member,
children, and inZone. The association labeled children corresponds to the system/
person node that we navigated from.

The three associations labeled as member have special interest to us with respect to
security. By clicking through on these, we can find that the parent nodes for these
entries correspond to the groups that this user belongs to:

Parent node Authority name Authority
display name

workspace://SpacesStore/
add3004a-ea05-46fc-9572-
b0e1ad044a16

GROUP_site_rm_SiteConsumer rm

workspace://
SpacesStore/04c8c3fd-2e36-
4b8c-b89e-347efc5116b2

GROUP_site_operations_
SiteManager

operations

workspace://SpacesStore/
f55be5a6-794d-4ce9-bb2f-
37b3411546d6

GROUP_
RecordsManager98c5a184-
9901-4b7c-9e16-
91522f2ccb2a

Records
Management
Records
Manager

If we look up these parent nodes, we find that all three correspond to
nodes of type cm:authorityContainer. Groups are thus represented as
cm:authorityContainers.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuring Security and Permissions

[428]

We see from these groups that the user bill has site manager rights for the Share site
called "operations". This gives him privileges to do things like manage the invitations
to the "operations" site and to manage the contents that show up on the dashboard
and the pages that will be available in the site for navigation.

User bill also has consumer rights for the Records Management site. In Records
Management, bill doesn't have any control over things like managing the layout or
controlling the members to the site. But the third group that bill belongs to above
is the Records Manager group. This means that within the File Plan or Document
Library area of this site, bill has all rights except for managing access controls.

Access to roles via webscripts
We next investigate to see how the Share pages for the Records Management site
retrieve role information. The Management console page uses the JavaScript file
tomcat\webapps\share\components\console\rm-user-roles.js for controlling
the dynamics of the Define Roles tool.

Within the onReady() initialization method of the Alfresco.admin.RMRoles object,
we can see that the URL for the webscript service call is created. The URL is in the
form:

http://localhost:8080/share/proxy/alfresco/api/rma/admin/rmroles/
(to return all roles),

or http://localhost:8080/share/proxy/alfresco/api/rma/admin/rmroles/
Administrator (to limit the results returned to only the administrator).

For example, on a request for the user permissions of the role User, the following
JSON packet is returned:

http://localhost:8080/share/proxy/alfresco/api/rma/admin/rmroles/User

{
 "data":
 {
 "name": "User",
 "displayLabel": "Records Management User",
 "capabilities" :
 [
 "ViewRecords",
 "DeclareRecords"
]
 }
}

Chapter 11

[429]

Permissions
The permissions that are used to define Records Management roles are themselves
defined in the file tomcat\webapps\alfresco\WEB-INF\classes\module\org_
alfresco_dod5015\model\recordsPermissionModel.xml. The definitions here
bootstrap the creation of the default Records Management roles on installation.
Remember that the settings in this file can be overridden by changes made to
Records Management roles using the Define Roles tool.

The file defines the permissionSet that can be applied to objects that are associated
with the rma:filePlanComponent aspect, which includes nearly all objects in the
Records Management content model:

<permissionSet expose="select" type="rma:filePlanComponent">

Individual permissions are defined near the end of the recordsPermissionModel.
xml file and then assigned to a permissionGroup that contains only that one
permission, such as the following:

<permission name="_DeclareRecords" expose="false">
 <grantedToGroup permissionGroup="DeclareRecords"/>
</permission>

Near the top of the permissionSet are the main permissionGroups that aggregate
the individual permissions into groups of permissions to be associated with the
Records Management roles.

The following permission groups are defined in this way, each one corresponding to
a role in Records Management:

•	 User
•	 PowerUser
•	 SecurityOfficer
•	 Records Manager
•	 Administrator

For example, the permissionGroup called User that corresponds to the Records
Management User role is defined as follows:

<permissionGroup name="User" allowFullControl="false" expose="true">
 <includePermissionGroup type="rma:filePlanComponent"
 permissionGroup="DeclareRecords"/>
 <includePermissionGroup type="rma:filePlanComponent"
 permissionGroup="ViewRecords"/>
</permissionGroup>

Configuring Security and Permissions

[430]

Summary
In this chapter, we learned how role-based security is managed for the Alfresco
Records Management site. Alfresco has a very rich and very granular permission
structure, making it possible to create custom roles that can match the needs of
most organizations.

We covered the following topics in this chapter:

•	 How to create Share users and groups
•	 How to add users to roles
•	 How to view the definition of a role, modify a role definition, and create

a new role
•	 How to create a User Rights Report
•	 How to assign access controls to parts of the records File Plan

At the end of the chapter, in a "How does it work?" section, we looked in detail
at how data webscripts are used to retrieve data from the Alfresco repository
for users, groups, and roles. We also saw the definition of the permission model
for Records Management and how the individual permissions are bundled into
permissionGroups corresponding to the roles in Records Management.

In the next chapter, we will complete our discussion of Alfresco Records
Management. In that last chapter, we'll discuss some additional areas of Records
Management configuration. In particular, we will see how records and record
containters of the Records Management content model can be extended using a tool
within the Records Management console.

Configuring Records
Management Parameters

This chapter looks in more detail at some of the configuration capabilities of the
Records Management Console. In previous chapters, we touched on some of the
things that can be done from the Management Console, such as the editing of roles
and the auditing of system activity. In this chapter, we look more thoroughly at
some of the other features that are available.

In this chapter, we will describe:

•	 How to create custom metadata properties associated with record object
types

•	 How to map metadata extracted from e-mails to Records Management
properties

•	 How to create and name custom events to use when building disposition
schedules

•	 How to create custom mapping types to specify relationships between
two records

At the end of this chapter, in a "How does it work?" section, we will discuss from
a developer perspective some of the internals of how the Records Management
Console works.

The construction of the Management Console is very similar to that of the
Administration Console. We will look at some of the similarities between the two
types of consoles and we will also look at how data dynamically configured and
edited by the console tools are retrieved and stored.

Configuring Records Management Parameters

[432]

The Records Management Console
We've already looked at parts of the Records Management Console in previous
chapters. Recall that the Management Console is available from the Records
Management dashlet found on the administrator's home page:

In Chapter 9, when we discussed Search and Auditing within Alfresco, we looked
at how auditing capabilities are built into the Management Console. Then, later in
Chapter 11, we discussed security and saw how role management is built into the
Management Console. We also saw how the Console could be used to create roles for
users of the Records Management site and how we could run a User Rights Report to
show the relationships between users, groups, and Records Management roles.

Let's take a tour now of some of the remaining capabilities available in the
Management Console that we have not yet discussed.

List of Values
From the list of available tools in the Tool list on the Management Console page, let's
first discuss List of Values. Lists of values will later be referenced when we look at the
Custom Metadata tool. We will look at how to create and manage a List of Values. To
do that, we click on the List of Values link under the list of available Tools:

Chapter 12

[433]

Out of the box, there are two Lists already defined: Supplemental Markings and
Transfer Locations, although there are no entries defined for either of these. The
Records application is actually already set up to use these two lists as we will see
shortly. These two elements are described in the DoD 5015.2 specification.

Supplemental Markings
By clicking on the Edit button next to an existing list in the List of Values tool,
we are able to modify the entries that are found in that list. For example,
Supplemental Markings are security categories that are recommended by the
DoD 5015.2 specification.

After installing the system, there are no default values for Supplemental Markings.
We can edit the values now, and we will add the values recommended by the DoD.

Note that on the Edit window, after adding a value, you also need to assign which
users or groups will be able to view the entry that you've added. This allows for
very granular control over specifying which users will be able to see which entries.
If no users or groups are specified for any of the new entries that we've added, any
drop-down list that uses the list will not display any entries for anyone.

In this case, we will grant only the user admin the ability to see the security level set
by the Supplemental Markings:

Configuring Records Management Parameters

[434]

Now, for example, when authorized users (in this case, user admin) edit metadata
for a record, they will see the following additional field on the edit form:

Transfer Locations
In a similar way, the Transfer Location information can be edited with the List of
Value tool. For example, here we enter values for the names of the locations where
the organization may house offsite storage facilities:

This Transfer List and the transfer values in it are used in the records application
when specifying the transfer of records location for a step in the disposition that
involves Transfer:

Chapter 12

[435]

Creating a new List of Values
New lists can be created just as easily as existing lists can be edited. By clicking on
the New List button of the tool, a pop-up is displayed that allows us to enter the
Name of the new list that we create:

Configuring Records Management Parameters

[436]

By entering a new Name and clicking on OK, we create a new list that is initialized
to have no entries. After the new list is created, the screen shows us the available lists
that we have. In the same way that we edited Supplemental Markings and Transfer
Locations, we click on the Edit button for this new list. In this way, we can add new
entries to the new list:

Deleting the List of Values
There is no way from the user interface to delete lists once you have created them.
It is possible to delete the individual entries in a list and a list can be renamed;
so in effect, a list might not be deleted, but it can be transformed into a totally
different list.

Chapter 12

[437]

Custom Metadata
Next, let's look at the Custom Metadata tool. The Alfresco content model framework is
extremely flexible and allows for the properties associated with objects to be expanded
at runtime by applying aspects. However, that still means that developers need to be
involved in writing the configuration code that sets up the available aspects.

The Custom Metadata area for Records Management allows non-developers to
expand on the available metadata properties that are associated with the type
definitions for record objects.

By clicking on the Custom Metadata link under the Tools section of the page,
we can see the screen that lets us add new properties to record objects:

On the left-hand side of the tool, we see a list of the four available types of record
objects to which new properties can be attached: record Series, record Categories,
record Folders, and records.

For a record Category, we then click on the New button and we are presented with a
screen for defining a new property. As an example, consider adding a new property
to a record Category called Department Authority. The property will be of data type
Text and will be selectable from a drop-down list by the user.

Configuring Records Management Parameters

[438]

If we click on the Use selection list field, we can see a list of the available
user-defined List of Values in the drop-down list. The second entry in this
drop-down list is the Corporate Departments entry that we added in the last section:

The data types that are available for the user-defined property are: Text, Boolean,
and Date.

We also have the option on this screen to specify whether or not the new property
that we are creating should be Mandatory or not. For this particular example, we
choose not to check it.

After clicking on the Create button, the new property is created and available to be
used with the record Categories. The new property will be available just like any
standard property for the Category:

Chapter 12

[439]

We can see this change in action by going into the File Plan and creating a new
Category. On the pop-up form to create the new Category, there is now an entry
called Department with the values that we defined from the List of Values.

The new property becomes available and viewable on the Details page for the
Category and it is also available and editable on the page to edit metadata for
the Category:

E-mail Mappings
We've seen earlier when we discussed the many ways to file data into Alfresco that
e-mail messages could be filed into the repository by using inbound e-mail or by
mounting the Alfresco repository as an IMAP folder within an e-mail client.

We've also discussed how, within Alfresco, metadata extractors can be built
to capture metadata stored in a document from the file header of an uploaded
document. Alfresco has a metadata extractor that can capture the metadata fields
from e-mail headers on upload into the repository.

Configuring Records Management Parameters

[440]

E-mail metadata
The format of e-mail messages is universally standard to allow the exchange
of information between any e-mail systems. RFC 822 specifies the process for
exchanging e-mail messages. That specification defines 25 metadata values that may
be included in the header of an e-mail. E-mail vendors may also include metadata
that is proprietary and has meaning only within their system.

More information about RFC 822, which defines the format for an ARPA
Internet text message, can be found here at http://www.faqs.org/
rfcs/rfc822.html.

The Email Mappings tool provides a user interface to allow the metadata fields
of an incoming e-mail message to be automatically mapped within the captured
metadata that will be associated with the record and then managed within the
Alfresco repository:

Incoming e-mail metadata field Alfresco repository metadata
messageSubject cm:subjectline

messageSubject imap:messageSubject

messageSent rma:publicationDate

messageSubject cm:description

messageSubject cm:title

messageTo rma:address

messageFrom imap:messageFrom

messageFrom cm:originator

Thread-Index imap:threadIndex

messageCc rma:otherAddress

messageFrom rma:originator

Date rma:dateReceived

Date imap:dateReceived

Message-ID imap:messageId

messageTo imap:messageTo

messageSent cm:sentdate

messageSent imap:dateSent

messageCc imap:messageCc

From the table, we see that it is possible to map the value of an incoming metadata
property to any number of properties for the node in the repository. For example,
the e-mail metadata property messageFrom maps to imap:messageFrom,
cm:originator, and rma:originatory.

Chapter 12

[441]

Creating an e-mail mapping
To create a new e-mail mapping, we can simply fill in the e-mail property name in
the field and then select from the appropriate repository property for the node that
the data will be mapped to:

In this example, we show how a mapping can be set up between the e-mail property
messageFrom and the repository property cm:author. After the repository property
is selected, we then click on the Add button to add the mapping to the list.

Events
We saw when creating disposition schedules that the steps of the disposition
can use either time-based or event-based triggers. As we've seen, events can be
triggered manually by clicking buttons at either the Folder or record level detail
page, depending on how the disposition was configured.

The Events tool in the Management Console provides a way to be able to enter
user-defined events that can be used when building dispositions.

We see that while most of the events are simple, there are four possible types:

•	 Simple
•	 Obsoleted
•	 Cross Referenced Record Transferred
•	 Superseded

Configuring Records Management Parameters

[442]

The next table shows the events and their types that are defined by default:

Abolished Simple Event
All Allowances Granted Are Terminated Simple Event
Case Closed Simple Event
Case Complete Simple Event
No longer needed Simple Event
Obsolete Obsoleted Event
Redesignated Simple Event
Related Record Transferred To Inactive Storage Cross Referenced Record Transferred
Separation Simple Event
Study Complete Simple Event
Superseded Superseded Event
Training Complete Simple Event
WGI Action Complete Simple Event

Superseded events occur when an item becomes out of date and is to be replaced
with a record that is current. Obsoleted events occur when an item becomes invalid
or out of date and is typically not replaced with another record. Optionally, similar
to superseded items, obsoleted items can be replaced with another record.

Obsoleted, superseded, and cross-referenced items often need to maintain a
relationship with one or more other records. We've seen earlier that these types of
relationships can be set up at the record level with the References option available
from a record's details page. We can see how this is done on a record in the next
screenshot:

Chapter 12

[443]

New user-defined events can be created by clicking on the New Event button in
the Events tool. On the page to create the event, we can enter a text Label for the
new event, specify its Type, and then click on Save. After doing that, the event then
becomes available for use when defining event-based triggers in the disposition:

Once an event is defined, it can be edited by clicking on the Edit button near the end
of the row in the list of events of the Events tool main page. From the Edit page, it is
possible to change the label or type of the event.

An event can be deleted by clicking on the Delete button at the end of the row for the
event in the list.

Relationships
The last tool in the Management Console that we will discuss is Relationships:

Configuring Records Management Parameters

[444]

We just saw how relationships can be established between records from the
References option on the records details page. The items in that drop-down list
correspond to the link relationships that are created in this Relationships tool.

There are only two types of link relationships that can be created:

•	 Bi-directional (a relationship that can be traversed in both directions)
•	 Parent/Child (a container relationship in which the child cannot exist

without its parent)

The labels that are applied to the nodes are what make the relationships unique and
assign meaning to them. For example, in a parent/child relationship, the parent node
might be labeled as "Versioned by" and the child node is labeled as "versions".

The following table summarizes the types of relationships that are available out of
the box:

Cross-Reference Bi-directional
ObsoletedBy, Obsoletes Parent/Child
Rendition Bi-directional
SupersededBy, Supersedes Parent/Child
Supporting Documentation, Supported Documentation Parent/Child
VersionedBy, Versions Parent/Child

Clicking on the New Relationship button brings up the screen for defining a New
Relationship. For a Bi-directional relationship, a single label is defined. For a
Parent/Child relationship, a label to be associated with the Source node and a label
to be applied to the Target node must be entered:

Chapter 12

[445]

How does it work?
From the perspective of how the Share application is built on Spring-Surf, the
Records Management Console presents an interesting study. Maybe it's not too
surprising, but the console re-uses much of the same framework code that is also
used in the Administration Console for managing Users, Groups, and Application
parameters.

The Management Console page
Clicking on the link in the Records Management Console dashlet causes the
following page URL to be displayed: http://localhost:8080/share/page/
console/rm-console/. One thing to note with this URL is that it does not
reference the rm site as part of it.

The URL format for a Console page is defined in the tomcat\webapps\share\WEB-
INF\classes\alfresco\share-config.xml file:

<uri-templates>
 <uri-template id="sitedashboardpage">/site/{site}/dashboard</uri-
 template>
 <uri-template id="sitepage">/site/{site}/{pageid}</uri-template>
 <uri-template id="userdashboardpage">/user/{userid}/dashboard</uri-
 template>
 <uri-template id="userpage">/user/{userid}/{pageid}</uri-template>
 <uri-template id="userprofilepage">/user/{userid}/profile</uri-
 template>
 <uri-template id="consolepage">/console/{pageid}/{toolid}</uri-
 template>
</uri-templates>

Here we see that the uri-template ID called consolepage is defined and that it
matches the signature of the URL page for the Records Management Console.

In this case, the pageid corresponds to rm-console. Armed with that information,
we can find the page descriptor file tomcat\webapps\share\WEB-INF\classes\
alfresco\site-data\pages\rm-console.xml:

<page>
 <title>Records Management Console</title>
 <title-id>page.rmConsole.title</title-id>
 <description>Records Management Administration
 Console</description>
 <description-id>page.rmConsole.description</description-id>
 <template-instance>console</template-instance>
 <authentication>user</authentication>
</page>

Configuring Records Management Parameters

[446]

Here's where we see some interesting information. The template-instance used
by the Records Management Console is console, the same as what is used for the
Administration Console. In the case of the URL used for the Administration Console,
the pageid is admin-console.

Rendering of Management Console tools
When the Management Console page is rendered, there is a list of eight tools that
display in the left navigation area.

The Console JavaScript file tomcat\webapps\share\WEB-INF\classes\templates\
org\alfresco\console.js collects the information about the available tools for the
page and saves the information into the set of known page context data.

The Records Management Console family of components can all be found in
the directory tomcat\webapps\share\WEB-INF\classes\alfresco\site-
webscripts\org\alfresco\components\console. Components for the
Administration Console are also located in that same directory:

Tool Tool ID Descriptor file name Unique URL identifer
Audit rm-audit rm-audit.get.desc.

xml
/components/
console/rm-audit

Custom
Metadata

rm-custom-
metadata

rm-custom-
metadata.get.desc.
xml

/components/
console/rm-custom-
metadata

Define Roles rm-define-
roles

rm-define-roles.
get.desc.xml

/components/
console/rm-define-
roles

Email Mappings rm-email-
mappings

rm-email-mappings.
get.desc.xml

/components/
console/rm-email-
mappings

Events rm-events rm-events.get.
desc.xml

/components/
console/rm-events

List of Values rm-list-of-
values

rm-list-of-values.
get.desc.xml

/components/
console/rm-list-of-
values

Relationships rm-
references

rm-references.get.
desc.xml

/components/
console/rm-
references

User Rights
Report

rm-
userrights

rm-userrights.get.
desc.xml

/components/
console/rm-
userrights

Chapter 12

[447]

Each of the descriptor files identifies the component as belonging to the rm-console
family. The unique URL identifier for the component is also listed. The unique URLs
are shown in the last column of the table above.

For example, consider the descriptor file for the Custom Metadata component. This
file includes the name, description, URL, and family identifier. The descriptor files
for the other rm-console components provide similar information:

<webscript>
 <shortname>Admin Console User Rights Report</shortname>
 <description>Administration Console - User Rights Report
 Tool</description>
 <url>/components/console/rm-userrights</url>
 <family>rm-console</family>
</webscript>

The Console page layout
Now let's briefly look at the layout of the Management Console page. Since both the
Administration and Records Management share the same template-instances, the
layout of the page is the same for both of these.

The FreeMarker template layout file is tomcat\webapps\share\WEB-INF\classes\
alfresco\templates\org\alfresco\console.ftl:

<@templateBody>
 <div id="alf-hd">
 <@region id="header" scope="global" protected="true" />
 <@region id="title" scope="page" protected="true" />
 </div>

 <div id="bd">
 <div class="yui-t1" id="divConsoleWrapper">
 <div id="yui-main">
 <div class="yui-b" id="divConsoleMain">
 <@region id="tool" scope="page" protected="true" />
 </div>
 </div>
 <div class="yui-b" id="divConsoleTools">
 <@region id="tools" scope="template" protected="true" />
 </div>
 </div>
 </div>
</@>

<@templateFooter>

Configuring Records Management Parameters

[448]

 <div id="alf-ft">
 <@region id="footer" scope="global" protected="true" />
 </div>
</@>

Here we see the standard header and title regions at the top and footer at the
bottom that we've seen for web pages that we've analyzed in earlier chapters. Note
that the scope of the tools region is for the template, which means that it will be
common across all Records Management Console pages, no matter which tool is
being viewed, whereas, the scope of the tool region is just for a single page.

The next screenshot shows the Management Console with the names of the
regions superimposed over it. As you can see, the layout is quite simple. The tool
region is occupied by a single component that specializes in performing a single
administrative task:

The tools navigation region
We saw above that left-most on the Management Console page is the region called
tools, which is used for navigating to the administrative tool that will be displayed in
the central tool region of the page.

The files that describe the workings of the tools component are stored here: tomcat\
webapps\share\WEB-INF\classes\alfresco\site-webscripts\org\alfresco\
components\console\console-tools.*.

Chapter 12

[449]

The tools component is quite simple. The list of available tools was queried from
the sitedata root-scoped object in the console.js file when preparing the context
information for the page. This information is then passed along to the JavaScript
controller file for this component, console-tools.get.js, which extracted the
information and put it into an array as part of the model.

The FreeMarker layout file console-tools.get.html.ftl for the tools component
simply formats the list of available tools for display:

<div id="${args.htmlid}-body" class="tool tools-link">
 <h2>${msg("header.tools")}</h2>
 <ul class="toolLink">
 <#list tools as tool>
 <li class="<#if tool_index=0>first-link</#if><#if tool.selected>
 selected</#if>">

 <a href="${tool.id}" class="tool-link"
 title="${tool.description?html}">${tool.label?html}

 </#list>

</div>

Custom Records Management metadata
We've seen with the Custom Metadata tool that it is possible to add user-defined
metadata properties for record objects. In Chapter 4, we looked at the content model
and saw how properties can be defined by and associated with aspects and types.

You may wonder how Alfresco manages to keep track of these custom metadata
definitions. In the same way that the script files can be stored in the repository and
activated immediately after editing the script, the custom metadata definitions are
also stored in the repository.

Configuring Records Management Parameters

[450]

The node reference value for the Custom Metadata definitions is workspace://
SpacesStore/records_management_custom_model. By using the Node Browser in
the JSF Explorer client, we can look up this definition file:

From the Primary Path information displayed in the Node Browser, we see that the
location for this file is Company Home/Data Dictionary/Records Management/
recordsCustomModel.xml.

The content of this file follows the standard format for an Alfresco content model file.
There is imported information from various other namespaces, the namespace for
the contents of this file is declared, and data-types, constraints, and aspects are
defined.

Custom Records Management namespace
The file defines the information contained in it with the prefix identifier rmc to
signify the Records Management custom metadata that it defines:

<namespaces>
 <namespace uri="http://www.alfresco.org/model/rmcustom/1.0"
 prefix="rmc"/>
</namespaces>

Custom aspects for record objects
We can see from this file that the standard Records Management object types are
extended by custom aspects defined in the recordsCustomModel.xml file:

<aspect name="rmc:customRecordSeriesProperties">
 <title>Properties for DOD5015 Custom Record Series</title>
 <properties>

Chapter 12

[451]

 <property name="rmc:MyLabel">
 <title>Custom Metadata Field</title>
 <type>d:text</type>
 <mandatory>false</mandatory>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>FALSE</tokenised>
 </index>
 </property>
 </properties>
 <associations/>
 <overrides/>
 <mandatory-aspects/>
</aspect>
<aspect name="rmc:customRecordCategoryProperties">
 <title>Properties for DOD5015 Custom Record Category</title>
 <properties/>
 <associations/>
 <overrides/>
 <mandatory-aspects/>
</aspect>
<aspect name="rmc:customRecordFolderProperties">
 <title>Properties for Custom Record Folder</title>
 <properties/>
 <associations/>
 <overrides/>
 <mandatory-aspects/>
</aspect>
<aspect name="rmc:customRecordProperties">
 <title>Properties for Custom Record</title>
 <properties/>
 <associations/>
 <overrides/>
 <mandatory-aspects/>
</aspect>

Configuring Records Management Parameters

[452]

After creating a new record Series with the custom metadata field MyLabel attached,
we can see the property included in the node property list like any other property
when browsing using the Node Browser. We would also be able to see in the Node
Browser, although not shown here, that the aspect {http://www.alfresco.org/
model/rmcustom/1.0}customRecordSeriesProperties has been applied to the
node for the New Series.

List of Values
As lists are created in the List of Value tool, the list and entry values are also stored
dynamically in the repository file Home/Data Dictionary/Records Management/
recordsCustomModel.xml.

For example, the Corporate Departments list that we defined earlier is represented
in the Records Management Custom content model as the following:

<constraint name="rmc:d7a13bb2-0999-4928-89d3-b8040d725663"
 type="org.alfresco.module.org_alfresco_module_dod5015.
 caveat.RMListOfValuesConstraint">
 <title>Corporate Departments</title>
 <parameter name="caseSensitive">
 <value>true</value>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 12

[453]

 </parameter>
 <parameter name="matchLogic">
 <value>AND</value>
 </parameter>
 <parameter name="allowedValues">
 <list>
 <value>Engineering</value>
 <value>Executives</value>
 <value>Human Resources</value>
 <value>IT</value>
 <value>Marketing</value>
 <value>Production</value>
 <value>Sales</value>
 <value>Finance</value>
 </list>
 </parameter>
</constraint>

In the example that we saw earlier, this list for Corporate Departments was
assigned to a new custom property for a record Category.

The controller JavaScript file for the Custom Metadata component calls back to the
repository to query the custom metadata for each of the record object types. After
assigning this new property, we can make the following webscript call to find the
custom properties returned in JSON format:

http://localhost:8080/share/proxy/alfresco/api/rma/admin/customproper
tydefinitions?element=recordCategory

{
 "data":
 {
 "customProperties":
 {
 "rmc:Department_Authority":
 {
 "dataType": "d:text",
 "label": "Department Authority",
 "description": "",
 "mandatory": false,
 "multiValued": false,
 "defaultValue": "",
 "protected": false,
 "propId": "Department_Authority",
 "constraintRefs":

Configuring Records Management Parameters

[454]

 [
 {
 "name": "rmc:d7a13bb2-0999-4928-89d3-b8040d725663",
 "title": "Corporate Departments",
 "type": "LIST",
 "parameters":
 {
 "caseSensitive": true,
 "listOfValues" :
 [

 "Executives","Sales","Engineering","Finance",
 "Production","Marketing","IT","Human Resources"
]
 }
 }
]
 }
 }
 }
}

Events
Custom event data is also persisted to the repository to allow dynamic assignment
and editing. The event data is stored in the repository file: Company Home/
Dictionary Data/Records Management/rm_event_config.json. The node
reference for this file is workspace://SpacesStore/rm_event_config.

The event data is persisted in the JSON format. The contents of the file look like the
following:

{"events":[{"eventDisplayLabel":"Training
 Complete","eventName":"training_complete",
 "eventType":"rmEventType.simple"},
{"eventDisplayLabel":"Case
 Complete","eventName":"case_complete",
 "eventType":"rmEventType.simple"},
{"eventDisplayLabel":"Obsolete","eventName":"obsolete",
 "eventType":"rmEventType.obsolete"},
{"eventDisplayLabel":"Separation","eventName":"separation",
 "eventType":"rmEventType.simple"},
{"eventDisplayLabel":"Case Closed","eventName":"case_closed",
 "eventType":"rmEventType.simple"},
{"eventDisplayLabel":"Redesignated","eventName":"re_designated",
 "eventType":"rmEventType.simple"},

Chapter 12

[455]

{"eventDisplayLabel":"Employee Terminates
 Company","eventName":"1eeacddf-6452-48f1-bb7c-
 e3acbdd54488","eventType":"rmEventType.simple"},
{"eventDisplayLabel":"Study Complete","eventName":"study_complete",
 "eventType":"rmEventType.simple"},
{"eventDisplayLabel":"WGI action complete","eventName":"WGI_action_
complete",
 "eventType":"rmEventType.simple"},
{"eventDisplayLabel":"Superseded","eventName":"superseded",
 "eventType":"rmEventType.superseded"},
{"eventDisplayLabel":"All Allowances Granted Are
 Terminated","eventName":"all_allowances_granted_are_terminated",
 "eventType":"rmEventType.simple"},
{"eventDisplayLabel":"No longer
 needed","eventName":"no_longer_needed",
 "eventType":"rmEventType.simple"},
{"eventDisplayLabel":"Related Record Transfered To Inactive
 Storage","eventName":"related_record_trasfered_inactive_storage",
 "eventType":"rmEventType.crossReferencedRecordTransfered"},
{"eventDisplayLabel":"Abolished","eventName":"abolished",
 "eventType":"rmEventType.simple"}]}

WebScript calls for Management Console
information
Much of the information that is edited by the Management Console is retrieved from
and stored back to the repository when editing is completed.

The following table summarizes some of the calls made for retrieving the
information for display. All calls have the base URL of:

http://localhost:8080/share/proxy/alfresco/api/rma/admin/. For example,
we saw the results of the URL http://localhost:8080/share/proxy/alfresco/
api/rma/admin/custompropertydefinitions?element=recordCategory listed
above.

Parameters for the base URL webscript Information retrieved
rmauditlog Retrieve the auditlog.
custompropertydefinitions?element=record Retrieve custom properties

for records.
custompropertydefinitions?element=recordFold
er

Retrieve custom properties
for record Folders.

custompropertydefinitions?element=recordCateg
ory

Retrieve custom properties
for record Categories.

Configuring Records Management Parameters

[456]

Parameters for the base URL webscript Information retrieved
custompropertydefinitions?element=recordSeri
es

Retrieve custom properties
for record Series.

emailmap Retrieves a list of e-mail
mappings.

rmeventtypes Retrieves the types of
events.

rmevents Retrieves the events.
rmconstraints Retrieves List of Value

information.
customreferencedefinitions Retrieve a list of custom

reference definitions.
rmroles Retrieve a list of all

Records Management
roles.

rmroles/{roleID} , like rmroles/Adminstrator Retrieves a list of
capabilities for a specific
Records Management role.

Summary
In this chapter, we covered the following topics:

•	 How to build custom List of Value lists to be used as drop-down selections
for custom properties

•	 How to add custom metadata properties to record object types;
•	 How to define custom events for event-driven triggers in disposition

instructions
•	 How to map e-mail metadata fields to properties of the content node

for the uploaded message that is stored in the repository
•	 How to create custom types of relationships between two records

At the end of this chapter in a "How does it work?" section, we included a detailed
discussion about how the Records Management Console works. Much of the same
framework code for the Management Console and the Administration Console is
shared.

Chapter 12

[457]

We saw how dynamically created properties are stored in the Records Management
Custom (rmc) namespace, and we saw that the file where this data is persisted is
in the Data Dictionary of the repository. The List of Values data is also stored in
the same custom content model file. Custom event data is persisted in a similar way
in a document stored under the Data Dictionary folder that allows the data to be
dynamically applied.

This is the last chapter of this book on Alfresco Records Management. In this book,
we've taken a complete tour of the features and capabilities of the Alfresco Records
Management system from a user's perspective. We've also taken some deep dives
into looking at Alfresco internals, and some of that information should come in
handy as a starting point for additional development or customization projects that
you may plan.

At the beginning of this book, we started by discussing the importance of Records
Management. Despite the fact that the bulk of the material covered in this book
focused on the mechanics of implementation of the Alfresco system, we noted
early on that much of the success of a records program has nothing at all to do
with software.

Success of a project is often very closely tied to the people, culture, and having
an understanding of what your organization really needs to accomplish. Only after
you have that part of the project under control should you jump into the details of
the software.

Once you are ready for implementation, the software is the most important tool
that will help you realize your Records Management goals, and Alfresco Records
Management is a great selection as a software tool to help you to do just that.

Index
Symbols
_buildDocListParams method 347
_loadActions() method 241
_setupDataTable() method 203
_uploadFromQueue() method 281

A
accession stage 325
ACP 88
Actions, Records Details page

about 292
Audit log 295, 296
Copy record 293
Delete record 295
Download action 292
Edit Metadata 292
File record 294
Move record 294

Administration console
working 423

Adobe Flex 75
Alfresco

record filing, via FTP 266
Alfresco 3.3, Share

data list 76
document management 76
Google-like search 76
permission management 76
Rules and Actions 76

Alfresco Bulk Filesystem Import tool
downloading 267

Alfresco Community software
about 31
building, from source code 32

Community version snapshot build,
downloading 32

Alfresco Content Model
about 124
aspects 137, 139
association 134
constraints 131
extending 164, 166
namespace, using 125
prefixes 126
properties 129, 130
types 127, 128

Alfresco Content Package. See ACP
Alfresco Enterprise software

installing 34
trial copy, downloading 33

Alfresco Flash previewer
embedded viewer, using 290
header 290
settings 290

Alfresco JSF-based Explorer client 31
Alfresco Share

about 73, 74
and Alfresco 3 Labs release 75, 76
as social platform 74
central point for 77
collaboration 84
dashboard 78, 102
history 74-76
site pages 81
theme, creating 118
themes 83, 84
use case 76
working 94

Alfresco Share, working
configuration files 94

[460]

secondary navigation header bar 120
top navigation toolbar 119

Alfresco software
about 30
Alfresco Community software 31
Alfresco Enterprise 32
base installation 33
compatibility, testing 31
downloading 31

Alfresco stack 29, 30
alfresco.war 42
Alfresco wiki 352
AND operator 365
association, Alfresco Content Model

about 134
child association 136
peer association 135

asterisk operator (*) 365
audits, Records Management

conducting, reasons 376
deliverables 378
important points 377, 378
internal audits 376
planning 376
reviews 378

Audit tool
about 379
accessing 379
using 380

Audit tool, using
Audit log report, clearing 388
Audit log report, exporting 387
Audit log report, searching 386, 387
Audit log report, starting 388
Audit log report, stopping 387
full log, viewing 386
log view options 385
report filtration, by date 385
report filtration, by event 382, 383
report filtration, by property 383
report filtration, by user 384
report, running 380, 381

authentication
and Search 354

authority documents 16

B
base installation, Alfresco software

Alfresco Records Management modules,
manual installation 41-44

Alfresco Repository, starting 44, 45
Alfresco Share, starting 46, 47
dashlets, sharing 48
installer, running 33
Records Management administrator,

designating 51, 52
Records Management dashlet,

enabling 49, 50
Records Management site, adding 50
Share application, starting 44, 45
steps 34-41

best practices, File Plan
activities based hierarchy 173
business processes based hierarchy 173
File Plan design 173
organizational based hierarchy 172

bulk import
access interface 268
and Records Management 267
dates 271
installing 268
issues 267, 268
metadata 271
records, auto declaring 270
shadow files 269, 270
tool, running 271

C
Category details Page

about 231, 235
<@region> tags 235

CIFS
about 253
configuring 255
record, filing 254
troubleshooting 256

cm:author property 441
cm:content property 308
collaboration, Alfresco Share

blog, tools 85
calendar, tools 85
data list, tools 85

[461]

discussion, tools 85
document library, tools 85
links, tools 85
project-based data 85
wiki, tools 84

Common Internet File System. See CIFS
configuration files, Alfresco Share

bean files, customizing 96-100
log4j.properties file 101
repository property files 95
system configuration files, loading 95

constraints, Alfresco Content Model
about 131
in-line constraint, defining 131
types 132
types, LENGTH constraint 133
types, LIST constraint 133
types, MINMAX constraint 134
types, REGEX constraint 132

container metadata, File Plan 179
Containers, adding to File Plan

Category, creating 176-178
Folder, creating 178, 179
Series, creating 175, 176

create disposition steps page
about 238-240
client-side JavaScript, using 241-243
components 240, 241
disposition-edit.js, using 241
disposition-edit page 238

createRecord method 283
Custom Metadata tool

about 437-439
e-mail mapping 439
events 441

Cutoff stage 321

D
Data Source 203
dashboard, Alfresco Share

about 78
configurations persistence 110
Customize User Dashboard screen 79
dashlet 78
dashlet placement, modifying 80
existing user dashboards, modifying 116

layout, modifying 80
persisted data, programmatic access

 116-118
preset configuration 102, 103
preset configuration, modifying 109
preset dashlets 107, 108
preset layout 103-106
site dashboard, changing 80
user dashboard 80

dashboard configurations persistence
AVM Store Share, component nodes 112-

114
AVM Store Share, page nodes 114, 115
Node Browser, accessing 110
Node Browser, using 110-112

dashlets
building 81
site-dashlet 81
type dashlet 81
user-dashlet 81

data types, Alfresco
d:any 131
d:boolean 131
d:content 130
d:date 131
d:datetime 131, 370
d:double 130
d:float 130
d:int 130, 370
d:local 131
d:long 130, 370
d:mltext 130
d:path 131
d:text 130, 370

Define Roles tool 419
destruction stage 327, 328
Details page. See also Record Details page
Details page

about 300
FreeMarker template 301
JavaScript controller 301

disposition schedule
about 207, 218, 219
Category details Page 231-234
changes, making 227
configuring 222
create disposition steps page 238-240

[462]

creating 216
edit disposition instructions page 236-238
editing, rules 221
event-based triggers 225
folder level application, example 212, 213
general information, specifying 219
instructions 208
instructions, inherting 212
metadata, editing 220
record level application, example 214-216
Record Lifecycle 208
steps 208, 220
steps, deleting 227, 228
steps, editing 228
time-based triggers 223, 225
trigger precedence, indicating 226
working 231

disposition schedule, creating
editing 220
Review period, scheduling 216-218

document 10
Document Library FreeMarker presentation

Alfresco page, components 192, 193
Content Object retrieving, Alfresco

Repository webscript used 205
Data Table, defining 201-204
Data Table, rendering 201-204
Document List Data Table 201
File Plan Document List 197
File Plan page, components 194-196
FreeMarker page layout 191, 192

Document Library JavaScript controller file
about 184, 185
doclibType, setting up in model data 187
File Plan root node, obtaining via service

call 186
Location Type, obtaining 185, 186
root node, setting up in model data 187
XML configuration data, reading 188-190

Document List controller file
actions 199, 201
user preferences 197, 198

document management
about 13
versus records management 13, 14

DoD-5015.2 specification 318

E
E4X 190
ECM 75
e-discovery

about 17
reasons 18

Electronic Document and Records
Management system (EDRMS) 13

electronic record, Share
about 10
filing 247, 250

Electronic Records Management. See ERM
e-mail mapping, Custom Metadata tool

about 439
creating 441
date filed 440
e-mail metadata 440
messageCc field 440
messageFrom field 440
messageFrom filed 440
Message-ID field 440
messageSent field 440
messageSubject field 440
messageTo field 440
Thread-Index field 440

Enterprise Content Management. See ECM
ERM

about 10, 11, 353
advantages 26
capabilities 20, 21
working 12, 20

event parameter 394
events, Custom Metadata tool

about 443
default events 442
new user-defined events 443
obsolete events 442
superseded events 442
types 441, 442

example, Search 372

[463]

F
Federal Rules of Civil Procedure. See FRCP
File Plan

about 344, 345
Alfresco example File Plan 170, 171
benefits 170
components 168
container, copying 181
container metadata 179
container, moving 181
creating, best practices 172
data, exporting to 230, 231
data, importing from 229
defining 168
disposition schedule 207
Search 353
transfer items, finding 347, 348
transfer items, rendering 346
transfer pages, linking 346
working 182

File Plan, components
about 169
categories 168
folders 169
series 168

File Plan, creating
Containers, adding to 175
steps 174

File Plan Document List
Document List controller file 197

File Plan page, Records Management site
about 86, 87
File Plan toolbar 87-89
left navigation panel 90, 91

File Plan report 334
File Plan toolbar

about 87
Export All button 88
file button 88
import button 88
new containers 88
Report button 88
Selected Items button 90

File Plan, working
Document Library FreeMarker

presentation 191

Document Library JavaScript controller
file 184, 185

documentlibrary page behavior 183, 184
File Plan page setup, by preset 182, 183

filing records
electronic file upload, internals 275-281
non-electronic file upload, internals 281-284
working 275

filter parameter 346
Filters.getFilterParams() method 348
folder

closing 321
FRCP 17
FreeMarker template, Details page

events component 312, 314
FreeMarker components 303-306
imported files 301, 302
metadata component 312
RecordsDocumentDetails object,

initializing 302
references component 314
web preview component 307

from parameter 394
FTS-Alfresco query language

about 364
Booleans, testing 369
conjunctive search 365
date searching 370
disjunctive search 365
elements, grouping 369
item, searching 364
KEYWORDS 367, 368
mandatory elements 372
non-QNames, escaping 369
operator precedence, hierarchy 372
optional elements 372
phrase, searching 365
properties, searching 366
property ranges, searching 370, 371
proximity search 371
QNames, escaping 368
special fields 367
terms, negating 366
wildcard search 365

[464]

G
GAAP (generally accepted accounting

procedures) 378
getLocationType() function 185
getSearchResults() function 390
global config 188
groups

about 401
browsing 402
deleting 404
editing 405
examining, within Share 401
members, adding 406
new group, adding 403

groups, Records Management groups
about 403
Records Management Administrator 402
Records Management Power User 402
Records Management Records Manager

402
Records Management Security Officer 402
Records Management User 402

H
Hurricane Katrina disaster 23, 24

I
IMAP

about 259
configuring 260
filing 260

IMAP configuration
about 260
for Outlook 2007 262-265
on e-mail clients 261, 262
on server 260

inbound e-mail processing 274
installing

bulk import 268
International Data Corporation (IDC) 25
Internet Message Access Protocol. See

IMAP
Invite People button 93
ISO-15489 9

J
jobClass property 343

K
Kofax Image Products 274

L
legal compliance

about 15
authority documents 16
e-discovery 17
regulatory compliance 16

lifecycle, record
accession stage 325-327
Audit log 328
cutoff stage 321
declaration step 319
Destroy action 325
destruction stage 327, 328
document, freezing 329
document, holding 329
File Plan report 334
folder, closing 321
mandatory metadata, specifying 318, 319
Record review 320
Transfer 321-323
Transfer Report, generating 324, 325
undeclared records 318
working 335

lifecycle tracking
cron schedule lifecycle, configuring

 343, 344
disposition lifecycle bean, configuring

 342, 343
records, manual checking 344
scheduler, logging information 344

List of Values
about 432, 433
creating 435, 436
deleting 436
Supplemental Markings 433, 434
Transfer Location information, editing

 434, 435
Lucene search engine 364

[465]

M
mandatory metadata

rma:originatingOrganization property 319
rma:originator property 319
rma:publicationDate property 319
specifying 318

method
Filters.getFilterParams() 348
setFilterIds() 345

model file, implementing
about 141
aspects 146
constraints 143
model file header 141, 142
model, installing 146
model namespace 142
types 143-145

model, installing
bootstrap deployment 147, 148
dynamic deployment 148, 149

Model-View-Controller. See MVC
MVC

about 55
advantage 56
web framework flow 56

N
NARA 325
National Archive and Records

Administration. See NARA
new Content Model exposing, from Share

user interface
metadata, editing 156-161
type information, verifying 154
Types, adding to Change Type action

 152-154
Types, adding to site upload form 150, 151
viewing forms, customizing 156-161

new model, creating
designing 139-141
model file, implementing 141
new Content Model exposing, from Share

user interface 150

non-electronic record, Share
about 10
filing 251, 252

O
OCR 273
onActionXXX methods

onActionCopyTo 349
onActionMoveTo 349

onCreateSite method 66, 68
onFileUpload method 276
onNewContainer() method 284
onOK function 351
onReady() method 241, 279, 394
operator precedence, hierarchy 372

() 372
[] < > 372
+ | - 372
AND 372
NOT 372
OR 372

Optical Character Recognition. See OCR
Outlook 2007

IMAP, configuring 262-265

P
parameters, base URL webscript

customreferencedefinitions 456
rmauditlog 455, 456
rmconstraints 456
rmevents 456
rmeventtypes 456
rmroles 456

permissions
about 420, 421
File a record 420
managing 421
Read a record 420

presets.xml file 109
property file label

label.create-site 62
label.display-site 62
label.load-test-data 62

[466]

label.rm-console 62
label.summary 62
label.title 62

Q
Q2 records 214
QNAME field, special field 367
Quartz

URL 336

R
record

declaring 319
freezing 329-331
holding 329
hold request, responding 330
lifecycle 317
locating, on Hold area 331, 332
metadata packages, exporting 333
on Hold, releasing 334
package, exporting 332
Release Hold action 334
reviewing 320

record filing, CIFS used
about 253
configuring 255, 256
steps 254
troubleshooting, problems 256

record filing, IMAP used
about 259
configuring 260
steps 260

record lifecycle
about 11, 12, 208
accession 211
cutoff 209
destruction 210
retention 210
transfer 210
transfer, examples 211

record lifecycle, working
background jobs 336
File Plan component 344, 345
notifications, reviewing 337
report generation, triggering 349-352
tracking 342

unique record ID 335, 336
records

about 9, 10
examples 10
filing 246
lifecycle 11, 12
records management 11
types 10

Records Details page
about 288
Alfresco Flash previewer 289
Details screen 288
Download action 292
Events 297, 298
Record actions 292
Record Metadata 290
references 298
references, displaying 300
references, types 299
references, working 300
URL links 297
working 300

RecordsDocumentList class 202
records, filing

Alfresco, via FTP 266
from another Share site 252, 253
from CIFS mounted drive 253
from e-mail client, IMAP used 259
from electronic record 247-250
from non-electronic record 251
multiple ways 246
options 274
scanning method, using 272

Records Management
about 11, 13
audits 376
benefits 15-27
configuration 101
Electronic Records Management (ERM)

systems 11
groups 401
Management Console 432
Records Management and Search 353
roles, creating 411
versus document management 13, 14
webscript dashlet flow 57

Records Management AMP files 41

[467]

Records Management, benefits
accountability 19
assets, preserving 20
efficiency 21, 22
good business 27
legal compliance 15
preparedness 22-25
security 26

Records Management Console
Events tool 441
homepage 432
List of Values 432
Relationships tool 443, 444
tools 448, 449
working 445

Records Management Console dashlet
about 55
webscript dashlet flow 57
webscripts flow 55, 56

Records Management Console, working
Management Console page 445
page layout 447, 448
tools, rendering 446, 447

Records Management Content Model
about 161
DoD 5015 specification 164
recordsModel.xml file 162

Records Management custom metadata
about 449, 450
events 454, 455
List of Values 452, 454
namespace 450
record objects, custom aspects 450, 452
webscript calls 455, 456

Records Management File Plan. See File
Plan

Records Management integration with
Alfresco Share

dashlet, working 55
Records Management AMP Files 53, 54
working 53

Records Management site
about 77, 407
accessing 86
dashboard, accessing 407
details, editing 407
File Plan page 86

private access, requesting 409, 410
public access, requesting 408, 409
Records Search 92
site dashboard 86
site members 93
site members, administering 93, 94

Records Model
diagram 162
header 162
imports 163
namespace 163

Records Search page
accessing 354
Search form 355
single-field search form 354, 355
user interface 355

records, types
electronic 10
non-electronic 10

repository
parent node 427
users 424
Users as cm:persons 425-427
usr:user objects 425

repository webscripts, working
Audit log 393
custom properties, assigning 392, 393
DataSource 390
data webscript 390
records search page 388, 389
saved searches 391

residual properties 124
REST Alfresco API services 198
Return on Investment (ROI) 15
review notifications

e-mail bean notification, configuring
 337, 338

e-mail notification cron schedule,
configuring 338, 339

notification e-mail contents, configuring
339, 340

outbound e-mails, configuring 340
records requiring review, manual check

340, 341
scheduler, tracking 342

RIA 75
Rich Internet Application. See RIA

[468]

rma-dashlet.js file 58
rma.get.desc.xml file 58
rma.get.head.ftl file 58
rma.get.html.ftl file 58
rma.get.js file 58
rma.get.properties file 58
RMA_onReady method 66
roles, Records Management

access controls, applying to File Plan
 412, 413

accessing, via webscript 428
creating 411
defining 429
editing 413
new role, creating 419
new role, deleting 419
permissions, browsing 414-417
permissions, editing 418
permission, using 429
user information, adding 398
viewing 413

S
saved search

about 373
creating 373, 374
deleting 375
editing 374

scanning
classifying 273
images, filing 273, 274
metadata 273
records, selecting 272
types 272

scoped configs 188
Search

about 353
and authentication 354
and Records Management 353
example 372

Search form 355
setFilterIds() method 345
Share bean configuration

about 96
aspects list 98, 99
client debug, settings 96-98

content types 99
repository, accessing 99

share.war 42
site pages, Alfresco Share

about 81
navigation, configuring 81-83

site, Record Management. See Record
Management site

size parameter 394
slingshot 96
Social Media 30, 74
special fields

ALL 367
ASPECT 368
CLASS 368
ID 367
ISNOTNULL 367
ISNULL 367
ISUNSET 368
KEYWORDS 367
PARENT 367
QNAME 367
TEXT 367
TYPE 368

Spring Surf website
URL 55

T
tc:region property 143
theme=newTheme parameter 119
to parameter 394
toXML() method 116
Transfer 321-325
troubleshooting, CIFS

about 256
authentication settings, conflicts 259
NetBIOS DLL, missing 257
ports, issues 258
server name length, measuring 258
server, testing 256, 257

U
UI event label 382, 383
undeclared record 318
Unified Compliance Foundation (UCF) 17
Universal Viewer 289

[469]

use case, Alfresco Share
personal sites 77
publishing sites 76
team project sites 76

user interface, Records Search page
about 355
date, searching 357, 358
File Plan search, restricting 360
filters, searching 358-360
property, searching 356, 357
Results tab 362, 363
return search result list, ordering 361, 362
search criteria, clearing 362
Search result columns 360, 361
simple search 356
syntax errors 364

user parameter 394
User Rights Report

about 422, 423
sections 422

users
creating 397

users, creating
about 397
new Share user, adding 398-400
new user access, to Share 400
user admin 401

W
WAR file 42
web preview component

client-side JavaScript 310, 311
controller JavaScript 307, 308
FreeMarker template 309
include files 307

webscript dashlet flow, Records
Management

console client-side JavaScript 64- 68
dashlet controller 60
dashlet files 58
dashlet files, in MVC Pattern 58
dashlet URL 62-64
dashlet view 61, 62
descriptor file 60
Records Management site, creating 68-71

X
XML Duration 224

Y
Yahoo! User Interface (YUI) library 79
YUI Data Table widget 202

Z
ZIP file 323
zoom in 290
zoom out 290

Thank you for buying
Alfresco 3 Records Management

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Alfresco Developer Guide
ISBN: 978-1-847193-11-7 Paperback: 556 pages

Customizing Alfresco with actions, web scripts, web
forms, workflows, and more

1. Learn to customize the entire Alfresco platform,
including both Document Management and
Web Content Management

2. Jam-packed with real-world, step-by-step
examples to jump start your development

3. Content modeling, custom actions, Java API,
RESTful web scripts, advanced workflow

Alfresco 3 Web Content
Management
ISBN: 978-1-847198-00-6 Paperback: 440 pages

Create an infrastructure to manage all your web
content, and deploy it to various external production
systems

1. A complete guide to Web Content Creation and
Distribution

2. Understand the concepts and advantages of
Publishing-style Web CMS

3. Leverage a single installation to manage
multiple websites

4. Integrate Alfresco web applications with
external systems

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: Records Management
	What is a record?
	What is Records Management?
	Electronic Records Management

	Record lifecycles
	Benefits of Records Management
	Records Management is about complying with legal requirements
	Regulatory compliance
	Authority Documents and compliance
	E-discovery

	Records Management is about ensuring accountability
	Records Management is about preserving assets
	Records Management is about efficiency
	Records Management is about being prepared
	Records Management is about coming to grips with data volumes
	Records Management is about security
	Records Management is about good business

	Summary

	Chapter 2: Getting Started with the Alfresco Records Management Module
	The Alfresco stack
	Alfresco software
	Make sure the software versions are compatible
	Downloading the Alfresco software
	Alfresco Community
	Alfresco Enterprise

	Installing the base Alfresco software
	Running the installer
	Installing Alfresco Records Management modules manually
	Starting the Alfresco Repository and Share application
	Starting Alfresco Share
	Share dashlets
	Enabling the Records Management dashlet
	Adding the Records Management site
	Designating the Records Management administrator

	How does it work?
	The Records Management AMP Files
	The Records Management Console dashlet
	The flow of Alfresco webscripts
	The flow of the Records Management webscript dashlet

	Web development within Share

	Summary

	Chapter 3: Introduction to the Alfresco Share Records Management Site
	The Share environment
	A brief history of Alfresco Share
	Alfresco Share as a social platform
	Alfresco Share and the Alfresco 3 Labs release
	Alfresco Share 3.X Post-Labs release

	Use cases for Alfresco Share
	Team project sites
	Publishing sites
	Personal sites

	Alfresco Share and collaboration
	Share dashboards
	Changing the dashboard layout
	Changing the placement of dashboard dashlets
	Changing site dashboards

	Site pages
	Configuring site page navigation

	Share themes
	Share collaboration
	Collaboration tools
	Project-based collaboration data

	The Records Management site
	The site dashboard
	The File Plan
	The File Plan toolbar
	Left navigation panel

	Records search
	Site members
	Administration of site members

	How does it work?
	Share configuration files
	Repository property files
	Customizing bean files
	Server log configuration file

	Dashboards
	Preset dashboard configurations
	Modifying the preset dashboard configurations
	Persistence of dashboard configurations
	Modifying existing user dashboards
	Programmatically accessing persisted dashboard data

	Creating a new Share theme
	Share site top navigation toolbar

	Summary

	Chapter 4: Metadata and the Alfresco Content Model
	The Alfresco Content Model
	The model namespace
	Alfresco namespaces

	Types
	Properties
	Constraints
	Types of constraints

	Associations
	Aspects

	Creating a new model
	Designing the model
	Implementing the model file
	The model file header
	Model import files
	The model namespace
	The model constraints
	The model types
	The model aspects

	Installing the model
	Bootstrap deployment of the model
	Dynamic deployment of the content model

	Exposing a new content model from the Share user interface
	Adding Types to the site upload form
	Adding Types to the Change Type action
	Seeing the new Type applied to a content node
	Customizing the forms for viewing and editing
the new model's metadata

	The Records Management Content Model
	The Records Model
	The Records Model header
	The Records Model imports
	The Records Model namespace

	The DoD 5015 Records Management Content Model

	Extending the Alfresco Content Model
	Summary

	Chapter 5: Creating the File Plan
	The File Plan—a definition
	Components of the File Plan
	Benefits of the File Plan
	Looking at the Alfresco example File Plan

	Best practice for creating the File Plan
	File Plans based on organizational hierarchy
	File Plans based on business processes and activities
	Best practice for File Plan design

	Creating the File Plan
	Adding containers to the File Plan
	Creating a Series
	Creating a Category
	Creating a Folder

	File Plan container metadata
	Copy and move of File Plan containers
	How does it work?
	How the File Plan page is set by the preset
	The File Plan, as extended from the Document Library
	The Document Library JavaScript controller file
	Getting the Location Type
	Setting doclibType in the model data
	Setting the root node in the model data

	The Document Library FreeMarker presentation
	FreeMarker page layout for the File Plan
	The File Plan Document List
	The Document List Data Table

	Summary

	Chapter 6: Creating Disposition Schedules
	What is the disposition schedule?
	Disposition instructions
	The record lifecycle
	Inheritance of the disposition
	Disposition example—application at the Folder level
	Disposition example—application at the
record level

	Creating the disposition schedule
	The review
	The disposition schedule
	General information for the disposition
	The disposition steps
	Configuring a simple disposition schedule
	Time-based triggers
	Event-based triggers
	Trigger precedence

	Making changes to the disposition schedule
	Deleting steps of the disposition schedule
	Editing steps of the disposition schedule

	Importing and exporting File Plan data
	Importing a File Plan
	Exporting the File Plan

	How does it work?
	The Category details page
	The edit disposition instructions page
	The create disposition steps page
	Disposition edit client-side JavaScript

	Summary

	Chapter 7: Filing Records
	Filing—more than one way
	Filing an electronic record from Share
	Filing a non-electronic record from Share
	Filing from another Share site
	Filing a record from a CIFS mounted drive
	What is CIFS?
	Filing with CIFS
	Configuring CIFS
	Troubleshooting CIFS
	Checking to see whether the CIFS server is running
	Missing NetBIOS DLL
	Problems with ports
	CIFS server name is too long
	Conflicts with authentication settings

	Filing from an e-mail client with IMAP
	What is IMAP?
	Filing with an IMAP e-mail client
	Configuring IMAP
	Configuring IMAP to run on the server
	Configuring IMAP on e-mail clients

	Filing to Alfresco via FTP
	Bulk import
	An unsupported add-on
	Bulk import and Records Management considerations
	Bulk import can't import disposition information

	Installing bulk import
	Simple interface to access bulk import
	Bulk import shadow files
	Auto-declaration of records
	Metadata and dates
	Running the tool

	Filing by scanning
	Identify which records to scan
	Metadata and classification
	Filing scanned images

	Other ways to file
	How does it work?
	Internals of electronic file upload
	Internals of non-electronic record filing

	Summary

	Chapter 8: Managing Records
	Records Details
	Alfresco Flash previewer
	Record Metadata
	Record actions
	Download action
	Edit Metadata
	Copy record
	Move record
	File record
	Delete record
	Audit log

	Links
	Events
	References

	How does it work?
	The Details page
	The JavaScript controller for the Details page
	The FreeMarker template for the Details page

	Summary

	Chapter 9: Following the Lifecycle of a Record
	Undeclared records
	Specifying mandatory metadata
	Declaring the record
	Record review
	Closing a Folder
	Cutoff
	Transfer
	Accession
	Destruction
	Audit log
	Hold or freeze
	Responding to a hold request
	Freezing records
	Locating records on hold
	Creating an export package of requested records and metadata
	Releasing the hold

	The File Plan report
	How does it work?
	The unique record ID
	Background jobs
	Review notifications
	Lifecycle tracking

	The File Plan component
	Linking to the transfer and hold pages
	Rendering transfer and hold Items
	Finding transfer items
	Finding hold items

	Transfer report

	Summary

	Chapter 10: Searching Records and Running Audits
	Search and Records Management
	Authorization and search
	Records Search page
	Single-field search form
	The Search form
	Basic search
	Property search
	Date search
	Search filters
	Restricted File Plan search
	Search result columns
	Result list search order
	Clearing the search criteria
	The Results tab
	Syntax errors

	FTS-Alfresco query language
	Searching for a term
	Searching for a phrase
	Wildcard search
	Conjunctive search
	Disjunctive search
	Negation
	Properties
	Special fields
	Escaping QNames
	Escaping characters not in a QName

	Grouping
	Boolean
	Dates
	Ranges
	Proximity searches
	Mandatory elements
	Optional elements
	Operator precedence

	Example searches
	Saved searches
	Creating a saved search
	Editing a saved search
	Deleting a saved search

	Records Management audits
	Purpose of the records audit
	Planning for the audit
	Things to look for in the audit
	Deliverables from the records audit

	The Audit tool
	Accessing the Audit tool
	Using the Audit tool
	Running an Audit report
	Filtering the report by event
	Filtering the report by property
	Filtering the report by user
	Filtering the report by date
	Audit log viewing options
	Viewing the full log
	Filing the Audit log report
	Export the Audit log report
	Stopping, starting, and clearing the Audit log

	How does it work?
	The Records Search page
	DataSource and data webscript
	Saved searches
	Custom properties
	The Audit tool

	Summary

	Chapter 11: Configuring Security and Permissions
	Creating users
	Adding a new Share user
	New user access to Share
	User admin

	Groups and Records Management
	Browsing groups
	Adding a new group
	Deleting a group
	Editing groups
	Adding members to a group

	Member access to the Records
Management site
	Subscribing to the Records Management site
	Requesting access to the moderated Records Management site
	Access to a private Records Management site

	Creating Records Management roles
	Roles and permissions
	Access controls applied to the File Plan
	Viewing and editing the Records Management roles
	Browsing role permissions
	Editing role permissions
	Creating a new role
	Deleting a role

	Read and file permissions
	The User Rights Report
	How does it work?
	Admin console—users
	Users in the repository
	Users as usr:users
	Users as cm:persons

	Access to roles via webscripts
	Permissions

	Summary

	Chapter 12: Configuring Records Management Parameters
	The Records Management Console
	List of Values
	Supplemental Markings
	Transfer Locations
	Creating a new List of Values
	Deleting the List of Values

	Custom Metadata
	E-mail Mappings
	E-mail metadata
	Creating an e-mail mapping

	Events
	Relationships

	How does it work?
	The Management Console page
	Rendering of Management Console tools
	The Console page layout

	The tools navigation region
	Custom Records Management metadata
	List of Values
	Events
	WebScript calls for Management Console information

	Summary

	Index

